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Abstract

We develop and estimate a model of student study time choices on a social network.

The model is designed to exploit unique data collected in the Berea Panel Study. Study

time data allow us to quantify an intuitive mechanism for academic social interactions:

own study time may depend on friend study time in a heterogeneous manner. Social

network data allow us to embed study time and resulting academic achievement in

an estimable equilibrium framework. We develop a specification test that exploits the

equilibrium nature of social interactions and use it to show that novel study propensity

measures mitigate econometric endogeneity concerns.
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1 Introduction

A large body of research has recognized the importance of understanding the mechanisms

through which peer effects arise and how the impacts of these mechanisms depend on one’s

social network. In this paper we exploit unique data from the Berea Panel Study (BPS) to

provide an improved understanding of these issues in a higher-education setting. Motivated

by research hypothesizing that student effort is likely to be an input that is readily influenced

by peers in the short run (Stinebrickner and Stinebrickner, 2006; Calvó-Armengol et al.,

2009; Cooley Fruehwirth, 2013; De Giorgi and Pellizzari, 2014), we focus on study time as

an explicit mechanism through which peer effects could arise in college. To explicitly account

for the role of social networks we estimate an equilibrium model of study time choice and

resulting grade determination on a given social network. We focus on what is likely the most

relevant set of peers in our context, a student’s friends.

The BPS was designed to address the substantial data challenges that arise when trying

to improve our understanding of peer effects in higher education. One prominent challenge

is that, because equilibrium outcomes depend on the entire social network, it is necessary to

characterize the set of peer connections. This is possible with the BPS because the design

involved surveying full cohorts of students and included questions characterizing friendships.

A second prominent challenge is that it is necessary to have access to student-level data on

study time. While collecting reliable time-use information is very difficult in annual surveys

(and, therefore, such information is typically not available), the BPS took advantage of

its high frequency of contact with respondents to collect eight time-diaries each year. To

stress the unique nature of the BPS data we note that, among existing sources of social

network data, perhaps only one, the National Longitudinal Survey of Adolescent Health

(Add-Health), could potentially provide a full view of a social network in an educational

setting where academic outcomes and student characteristics are also observed. However,

because the Add-Health dataset has a primary focus on adolescent health and risk-related

behaviors, it does not contain information about time spent studying. Thus, to the best

of our knowledge, there is no other data source that is able to both fully characterize a

social network of students and provide direct evidence about a central input in the grade

production function that has been hypothesized to generate social interactions.

We develop our model to exploit the unique BPS data. The social network is known

at the beginning of a model time period. Subsequently, all students in the social network

simultaneously choose their study time to maximize their own achievement, net of studying

costs. Achievement depends on a student’s own study time, and a student’s studying cost

depends on her own study time and friend study time, e.g., students may conform to their
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friends, or it may be more fun to study if your friends are studying. Cost functions are

allowed to be heterogeneous across students. This specification allows us to provide some of

the first empirical evidence about the importance of heterogeneity in how responsive students

are to their friends’ study time choices, which previous research suggests matters (see, e.g.,

Hoxby and Weingarth, 2005; Epple and Romano, 2011).

The social interactions literature has paid close attention to the endogeneity problem

that is present if there exist correlated unobserved variables, that is, unobserved information

related to both peer group membership (in our context, friendship links) and outcomes of

interest (Manski, 1993; Moffitt, 2001; Epple and Romano, 2011). In our case, where we focus

on a social interaction in study time choices, a relationship between friends’ study times could

arise because friends influence each other (“endogenous social interactions”, or “peer effects”)

or because students with similar unobserved determinants of study time become friends

(“correlated unobserved variables”). Institutional details, together with empirical checks we

conduct, suggest that correlated shocks arising through some typically considered channels,

e.g., coursework and dormitories, are not the most salient type of correlated unobserved

variables. The most relevant type of correlated unobserved variable would seem to be an

unobserved individual characteristic, which could be thought of as a student’s propensity to

study.

We adopt a novel two-step approach for dealing with this endogeneity problem. First,

we take advantage of the fact that our role as BPS administrators afforded us with a unique

opportunity to directly measure the typically unobserved variable of relevance—students’

propensities to study. Specifically, the day before freshman classes began, we collected

information about how much a student actually studied in high school and how much the

student expected to study in college. We find that both high school study time and expected

college study time have strong correlations with study time in college and are also strongly

related to friendship patterns in our data.

Our second step is to develop a specification test that can detect endogeneity problems

caused by unobserved determinants of study time. We exploit the fact that the equilib-

rium nature of social interactions in our model implies that such unobserved determinants

would generate cross-sectional dependence in residuals.1 We use a measure of cross-sectional

correlation in residuals as our test statistic. Crucially, we demonstrate that our test can

have power to detect cross-sectional correlation in residuals caused by unobserved determi-

nants even if they produce an endogeneity bias that leads to inconsistently estimated model

1Individual characteristics (observed or unobserved) typically influence equilibrium choices of many (if
not all) others in a large class of social interactions models (see, e.g., Calvó-Armengol et al., 2009; Blume et
al., 2015). A very similar situation occurs in spatial autoregressive econometric models (see, e.g., Pinkse et
al., 2002; Lee, 2004).
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parameters.

We estimate the model using data from students’ freshman year. The study of the

freshman year is appealing because it allows us to characterize the network as completely

as possible—freshmen survey response rates were close to 90 percent and most friends of

freshmen are also freshmen—and because institutional details of the school imply that course

difficulty, number of classes taken, and hours of paid employment tend to be quite similar

for freshmen.

Under the baseline specification, in which we use our study propensity data to estimate

the model, we find no evidence of the cross-sectional residual correlation described above.

However, we do find significant cross-sectional residual correlations when we re-estimate the

model excluding our study propensity data, i.e., using only measures of student charac-

teristics that are typically available to researchers. This shows that our specification test

has the power to detect unobserved determinants of study time. Therefore, these findings

provide evidence that our study propensity measures play an important role in addressing

endogeneity concerns.

Our estimates provide strong evidence that friend study time has a substantial effect on

one’s own study time. We also find that one’s own study time is an important determinant of

one’s own achievement. We estimate students to have different best response functions, i.e.,

they react differently to changes in friend study time. Hereafter, we will often refer to this

as heterogeneity in reactiveness. This heterogeneity has equilibrium implications: the extent

to which heterogeneity in reactiveness affects total achievement depends on the relationship

between own and friend reactiveness, among all friendship links. Therefore, it is important

to take into account the joint distribution of friendship links and student characteristics to

understand social interactions.2

We use our estimated model to perform two counterfactual exercises. First, we examine

how the network structure, combined with the homophilous sorting into friendships observed

in the data, affects the response to changes in friend study time. As Golub and Jackson

(2012) note, despite a large amount of work documenting the existence of homophily and

a smaller literature examining its origins, the literature modeling the effect of homophily

is in its infancy.3 We exogenously increase (shock) the study time of each student and

2Kline and Tamer (2011) discuss the importance of distinguishing between estimates of technological
parameters and the equilibrium effects of social interactions. Carrell et al. (2013) discuss the differences be-
tween reduced-form estimates of social interactions estimated using experimental variation of administrative
units and those resulting from the interactions of students given a social network. Richards-Shubik (2015)
separates supply and demand mechanisms in a model of sexual initiation.

3Jackson (2008) provides a discussion of work documenting the existence of homophily; see Camargo et
al. (2010) for a specific example. For theoretical models of homophily’s origins see Currarini et al. (2009),
Currarini et al. (2010), and Bramoullé et al. (2012). Badev (2021) allows for homophily in his empirical
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assess how study times and achievement change for other students in the social network.

There is substantial heterogeneity in study time responses depending on which student is

shocked, with larger impacts associated with more central students and students connected

to more reactive peers. The specific manner in which students with different characteristics

are arranged on the network is important for responses. This exercise also provides a natural

framework for quantifying the importance of equilibrium interactions.

In our second counterfactual, we examine how achievement would differ if friend char-

acteristics were identically distributed across students, instead of being strongly correlated

with one’s own characteristics, or homophilous, as in the data. On average, women, black

students, and students with above-median high school GPAs have high propensities to study

and tend, in the data, to sort into friendships with students similar to themselves. Therefore,

these groups tend to see declines in their friends’ propensities to study in the counterfactual.

However, these groups’ losses are not offset by the gains of their complements. Intuitively, the

estimated heterogeneity in best response functions means that total study time (and hence,

achievement) is highest when students with high propensities to study are friends with others

with high propensities to study, as is on average the case in the data. In contrast, there is a

lack of such assortative matching in the counterfactual networks.

The remainder of this paper is organized as follows. Section 2 discusses related literature.

Section 3 contains a description of the BPS data. Section 4 presents our model. Section 5

presents our empirical specification. Section 6 discusses our specification test and Section 7

presents estimation results. Section 8 presents the results from our counterfactual exercises

and Section 9 concludes.

2 Related Literature

There is an extensive literature on academic peer effects, which has been surveyed by Epple

and Romano (2011) and Sacerdote (2011). As discussed in Sacerdote (2011), papers in

this literature typically do not directly examine mechanisms through which peer effects are

generated. Cooley Fruehwirth (2013), Calvó-Armengol et al. (2009), De Giorgi and Pellizzari

(2014), and Tincani (2018) all stress the importance of equilibrium models of students’

effort choices, but lack direct data on student effort. Cooley Fruehwirth (2013) and Calvó-

Armengol et al. (2009) estimate parameters of their respective models, identifying effort

through residual variation in peer outcomes. De Giorgi and Pellizzari (2014) and Tincani

(2018) test the implications of different theoretical models of social interactions using student

achievement data.

study of friendship formation and smoking behavior.
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Much of our contribution to the literature stems from access to unique data on an input,

study effort, that, as discussed earlier, is not available in the other data that contain social

network information. Our work is perhaps most complementary to that of Calvó-Armengol

et al. (2009), who also seek to contribute to the understanding of network-mediated peer

effects in an education setting, taking a social network as given. However, the papers have

different methodological and substantive contributions. Given that the Add-Health data

used by Calvó-Armengol et al. (2009) do not contain study effort information, they derive a

theoretical result: in an environment with an input subject to endogenous, network-mediated

social interactions, where best response functions have a common slope and are linear in the

input choices of first-order neighbors, students’ equilibrium choices of inputs are proportional

to Katz-Bonacich centrality, a commonly used statistical measure of network topology. This

result allows them to empirically relate network structure to achievement, without direct

data on the latent social-interaction input.

In contrast, having direct data on study effort allows our paper to provide direct evi-

dence about the relationship between this input and achievement and also allows us to relax

other assumptions that are needed to obtain the theoretical result of Calvó-Armengol et al.

(2009). For example, we can directly estimate heterogeneous best response functions and can

also allow for nonlinearity in best response functions, which breaks the connection between

network topology and equilibrium outcomes required in Calvó-Armengol et al. (2009). We

find heterogeneity across students in reactiveness to be important in our application, and we

estimate that the variation in the characteristics of students and their specific arrangement

in the network matter a great deal for outcomes. We are also able to examine the relevance

of production complementarities in generating endogenous social interactions, as well as the

role of contextual effects. Our work is the first to include all of these features in a common

empirical framework.

Our unique study propensity data also distinguish our paper from Calvó-Armengol et al.

(2009), with respect to how we deal with a standard endogeneity concern that has received

much attention in the peer effects literature. Due to data limitations, it is not possible

for Calvó-Armengol et al. (2009) to distinguish between cross-student outcome correlations

due to actual peer effects (e.g., endogenous social interactions) and cross-student outcome

correlations due to sorting based on unobserved determinants of inputs (e.g., unobserved

propensities to study). In contrast, our propensity to study measures provide a natural way

to potentially address the endogeneity concern directly, with our desire to gauge the success

of these measures serving as a motivation for our specification test.

Finally, there is a separate, but related, literature that has focused on modeling the

formation of social networks, an important and notoriously difficult problem (see Christakis
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et al., 2010; Badev, 2013; Hsieh and Lee, 2016; Mele, 2017; Paula et al., 2018; Sheng, 2020;

Badev, 2021).4 Because we do not model how friendships are formed, in our counterfactuals

we examine fully-specified networks of interest. In particular, we consider the observed

networks and randomly generated networks.

3 Data

The BPS is a longitudinal survey that was designed by Todd Stinebrickner and Ralph Stine-

brickner to provide detailed information about educational outcomes in college and labor

market outcomes in the early post-college period. The BPS survey design involved col-

lecting information about all students who entered Berea College in the fall of 2000 and

the fall of 2001. Baseline surveys were conducted immediately before the start of first-year

classes and students were subsequently surveyed 10-12 times each year during school. As has

been discussed in previous work that uses the BPS, caution is appropriate when considering

exactly how results from the BPS would generalize to other specific institutions (e.g., Stine-

brickner and Stinebrickner, 2006, 2013). At the same time, from an academic standpoint,

Berea has much in common with many four-year colleges. It operates under a standard

liberal arts curriculum and the students at Berea (which is in central Kentucky) are similar

in academic quality to, for example, students at the University of Kentucky (Stinebrickner

and Stinebrickner, 2008b).

Our study is made possible by three types of information that are available in the BPS.

First, the BPS elicited each student’s closest friends. Our analysis utilizes friendship obser-

vations from the end of the first semester and the end of the second semester. The survey

question for the end of the first semester is shown in Appendix A.1. The survey question

for the end of the second semester is identical (except for the date). Our friendship survey

questions have a full-semester flavor to them, as they asked students to list the four people

who had been their best friends that semester. Second, the BPS collected detailed time-use

information eight times each year, using the twenty-four hour time diary shown in Appendix

A.1. Finally, questions on the baseline survey reveal the number of hours that a student

studied per week in high school and how much the student expects to study per week in

college. Because these variables were collected just before the start of the first semester of

freshman year, we refer to these variables as our study propensity measures. The survey data

4Goldsmith-Pinkham and Imbens (2013) posit a model of network formation and, within this model,
derive a testable implication of endogenous network formation (for further discussion, see Boucher and
Fortin, 2016). We do not use our specification test to test for a specific model of network formation; rather,
the goal of our specification test is to detect unobserved determinants of study time that we believe to be
relevant to our context, taking as given the network. Therefore, we view our work as complementary to that
of Goldsmith-Pinkham and Imbens (2013).
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are merged with detailed administrative data on race, sex, high school grade point average

(GPA), college entrance exam scores, and college GPA in each semester.

This paper focuses on the freshman year for students in the 2001 entering cohort.5 There

exists a practical data-related reason for focusing on freshmen; we are able to characterize the

network most completely in the first year both because survey response rates are very high

in the first year and because over 80% of friends reported by students in their freshman year

are themselves freshmen.6 However, our focus on freshmen, when combined with important

institutional details at Berea, is also of relevance for whether it is reasonable to avoid the

modeling complications that would result from taking into account variation across students

in course difficulty, the number of classes taken, or hours of paid employment. With respect

to course difficulty, it seems particularly relevant that students at Berea are all enrolled in

a general, liberal arts curriculum. Importantly, the specifics of this curriculum imply that

the majority of classes in the freshman year fall under the heading of “general studies,” with

many of these general studies classes being identical across students and the remainder being

similar in nature across students.7 With respect to the number of classes taken, there is less

variation at Berea than other schools. Students are not allowed to study part-time, and

there exists a strong tradition of students taking four classes in each semester to complete

the required number of courses, 32, in an eight semester (four year) period.8 With respect to

hours of paid employment, students at Berea are all assigned work-study jobs, and students

are not allowed to work in off-campus jobs. Then, a large degree of uniformity is present in

hours worked across our sample because the work-study jobs have 10-hour weekly minimums,

which students are not allowed to appreciably exceed in their freshman year. The mean and

standard deviation of work hours for our sample are 10.9 and 1.4 hours per week, respectively.

3.1 Sample Construction

Our focus is on students who stayed in school for the full first year. There were a total of

331 students who fit this description. Our estimation sample consists of the 307 students

5 We focus on this cohort because the survey contains more comprehensive time-use and friendship
information for them. Information about time use was collected using time diaries for the 2001 cohort,
while, for the 2000 cohort, this information was collected using questions that asked respondents to “think
carefully about how much time was spent studying” in the last twenty-four hours. First-semester friendship
information was collected at the end of the first semester for the 2001 cohort, while, for the 2000 cohort,
first-semester friendship information was collected retrospectively during the second semester.

6Approximately 88% of all entering students in the 2001 cohort completed our baseline survey, and
response rates remained high for the eleven subsequent surveys that were administered during the freshman
year.

7On average, students take about one course in their area of specialization per semester in their freshman
year.

8This tradition has persisted from past institutional details, which required degrees to be completed in
four years, except in exceptional circumstances.
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(i.e., 93% of the 331) with friends in each semester. A student j is deemed to be a friend

of student i if either i lists j as a friend or j lists i as a friend. This means that a student

can have friends in a particular semester even if the student did not complete the friendship

question in that semester. Pooling the two semesters, we find that about 85% of the students

in our final sample reported friendship information directly, via the friendship survey.

3.2 Descriptive Statistics

This section presents descriptive statistics for the sample.9 We start by describing student

characteristics (this discussion is based on Table A1). Forty-four percent of students are

male, 18% of students are black, the mean high school grade point average (high school

GPA) for the sample is 3.39, the mean combined score on the American College Test (ACT)

is 23.26, and, on average, students studied 11.24 hours per week in high school and expect

to study 24.96 hours per week in college. Examining the characteristics of certain subgroups

of interest, on average, males have lower high school GPAs than females (3.24 vs. 3.51) and

black students have lower high school GPAs than nonblack students (3.14 vs. 3.45). Black

students studied more, on average, in high school than other students (15.29 vs. 10.36).10

Focusing on descriptive statistics of outcomes during the first year (this discussion is

based on Table A2), on average, students study 3.49 hours per day in the first semester and

3.50 hours per day in the second semester.11 On average, males study less than females,

black students study more than nonblack students, and students with above-median high

school GPAs study more than students with below-median high school GPAs.12 The average

first semester GPA is 2.89 and the average second semester GPA is 2.93, and males, black

students, and students with below-median high school GPAs all have lower average GPAs

than their counterparts.13

Turning to friend data for our sample (this discussion is based on Table A3), as described

at the beginning of this section, we define friendship as the union of reported links between

9The first three tables pertaining to these statistics were a bit cumbersome, so they are in Appendix A.2.
10The first two differences in means are significantly different at the 0.001 level. The averages of high

school study time for black students and nonblack students are significantly different at the 0.01 level.
11Descriptive statistics about study time outcomes presented in Table A2 are computed at the level of

individual study time reports, of which there may be up to four in each semester, for each student. When
computing other descriptive statistics (including regressions), we use the semester-specific average (over the
study time reports) for each student The two measures are very similar, other than the larger variance of
the individual-report-based measure. As we make clear when we describe our estimation procedure, we use
individual study time reports when estimating the structural parameters of our model.

12Pooling observations from both semesters, the first and last differences in means are significantly different
at a 0.05 level and, given the relatively small number of black students, the middle difference in means is
significant at a 0.10 level.

13Pooling observations from both semesters, all of these differences are significant at a 0.05 level.
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Table 1: Network characteristics

Friendship transitions
Prob. friendship reported first 0.51
semester but not second
Prob. second semester 0.51
friendship is new
Note: Top row is computed according to
Pr{A2(i, j) = 0|A1(i, j) = 1} and bottom
row is computed according to Pr{A2(i, j) =
0|A1(i, j) = 1}, where At is the adjacency
matrix in semester t.

Correlations between
own and avg. of friends
Black 0.74
Male 0.71
HS GPA 0.23
Combined ACT 0.31
HS study time 0.23
Expected study time 0.14
Note: Each row is presents the correlation
for a student’s own measure and the average
of their friends’ measures, pooled over both
semesters.

two students that semester.14 Students have 3.3 friends on average, and there is considerable

variation in the number of friends: the minimum number of friends is one, while the maximum

number of friends is 10. Male and black students (and, therefore, female and nonblack

students) sort strongly towards students with the same characteristics. For example, 74%

of the friends of male students are male, while only 18% of the friends of female students

are male. Similarly, 69% of the friends of black students are black, while only 7% of the

friends of nonblack students are black. While male and black students have friends with

lower incoming GPAs and lower combined ACT scores, males have friends who studied less

in high school and expect to study less in college (compared to females), while black students

have friends who studied more in high school and expect to study more in college (compared

to nonblack students). Finally, we describe friend study time. Consistent with own study

time, on average, friend study time is 3.5 hours per day. Also, average friend study time is

much lower for males than for females (3.16 vs. 3.76 hours per day).

Table 1 shows other network characteristics. The network evolves over time: both the

probability that a first-semester friendship no longer exists in the second semester and the

probability that a second-semester friendship was not present in the first semester are 0.51

(the similarity of these values is coincidental). Consistent with the findings from Table

A3, the correlations on the right side of the table show substantial sorting on the basis of

observable characteristics.

Table 2 presents descriptive OLS regression results predicting own study time (left col-

umn) and GPA (right column), pooling observations over both semesters. The study time

regression shows evidence of significant partial correlations of one’s own study time (com-

14Therefore, the number of friends may exceed that elicited in the survey in Appendix A.1.
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Table 2: Study time and GPA OLS regressions

Dependent variable:

Own study GPA

(1) (2)

Male −0.369∗∗ −0.131∗

(0.171) (0.076)

Black 0.116 −0.225∗∗

(0.214) (0.109)

HS GPA 0.413∗∗ 0.437∗∗∗

(0.188) (0.081)

ACT −0.032 0.040∗∗∗

(0.023) (0.013)

HS study 0.043∗∗∗ 0.001
(0.008) (0.004)

Expected study −0.002 −0.006
(0.009) (0.003)

Friend study 0.166∗∗∗

(0.039)

Own study 0.090∗∗∗

(0.022)

Constant 1.915∗∗ 0.417
(0.759) (0.362)

Observations 574 571
R2 0.169 0.259

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Standard errors clustered at the student level are in paren-
theses. GPA is measured in GPA points (0-4). Own and friend HS study and expected study are
measured in hours/week. Own and friend study are measured in hours/day. The variable “Friend
z” for student i in period t is the average of the variable z across i’s friends in period t.
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puted as the average amount the student reports studying in the time diaries within a

semester) with own sex and own high school GPA. As for our study propensity measures,

we estimate a positive, significant partial correlation between own study time and own high

school study time. We do not estimate a significant correlation between own study time

and expected study time when both propensity measures are included. However, in results

not shown here, when expected study time is the only study propensity measure included,

we find that it has a positive, significant partial correlation with own study time (t-statistic

of 2.2). The overall contribution of these two variables is substantial, with their omission

reducing R-squared from 0.169 to 0.087 (see Table A8 in the appendix). Our novel measures

of the propensity to study clearly have content. One’s own study time also has a significant

positive partial correlation with friend study time (computed as the average over friends of

their own study times). The GPA regression shows that own GPA has a significant positive

partial correlation with being female, being nonblack, and having above-median high school

GPA. Own GPA also has a significant partial correlation with own study time.

4 Model

Students are indexed by i = 1, . . . , N and time periods (semesters) are indexed by t = 1, 2.

We denote the study time of student i in time period t as sit and let St define a column

vector collecting all students’ study times during that period. Study time represents a

student’s average daily study time over the course of a semester.15 We treat the adjacency

matrix representing the network of friendships as pre-determined. This matrix in period t,

denoted At, has a main diagonal of zeros and an (i, j) entry of one if student i has j as a

friend and zero otherwise.16 The average study time of i’s friends during period t is

s−it =

∑N
j=1At(i, j)sjt∑N
j=1At(i, j)

. (1)

15This is isomorphic to the natural input of total study time that period.
16Other than its being a square matrix of full rank (i.e., we exclude students with no friends, as their

friend study time is not defined), we impose no restrictions on At. Though we use the union of reported links
(i.e., At(i, j) = 1 if either i reports being friends with j, or vice versa), the model could also accommodate
non-reciprocal links (i.e., i may link to j without j linking to i). Our model has the potential to analyze
any network configuration because we have a well-defined, observed, input that has a natural upper bound
(one cannot study more than 24 hours per day), which allows us to show there exists a unique equilibrium
under conventional parameter restrictions (e.g., weak concavity). This is contrast to other work, e.g., the
latent input structure in Calvó-Armengol et al. (2009) means that the existence of an equilibrium depends
on a stability condition: their (homogeneous) best response slope must be less than the inverse of the
largest eigenvalue of the adjacency matrix. Because this largest eigenvalue tends to grow with the size of
the largest connected component of a school’s network, their model will tend not have an equilibrium for
large, yet realistic, networks; for example, at their pooled point estimate, the networks in both freshman
year semesters at Berea would be inadmissible.
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Taking into account their friends, students make decisions about how much to study in a

particular semester by considering the costs and benefits of studying.17

The benefits of studying come from academic achievement. The (deterministic) produc-

tion function for achievement, y(·), depends on how much a student studies, sit. However, it

is also desirable to recognize that performance in school will vary across students with differ-

ent observable characteristics xi. For example, students with higher college entrance exam

scores may enter college better prepared or “smarter” than other students at the time of

entrance. We allow the effect of these observable characteristics to enter through a function

µyi(xi), and we refer to this part of a student’s initial endowment as one’s “human capital

type.” Noting that this function will be specified in Section 5 and suppressing the xi portion

of this notation, the production function is

y(sit, µyi) =β1 + β2sit + µyi, (2)

where the human capital type is assumed to be a sufficient statistic for the history of prior

inputs.

Social interactions may arise because the cost of studying, c(·), is allowed to depend on

friends’ study time choices. We focus on a specification wherein a student’s cost of studying

can depend on how much their study time deviates from a “target” based on friends’ study

time choices. (see, e.g., Brock and Durlauf, 2001; Moffitt, 2001; Blume et al., 2015).18 The

costs of studying are allowed to vary across students with different observable characteristics.

For example, students with higher college entrance exam scores may feel differently about

the deviation of their own study time from friend study time, or may find studying more

(or less) enjoyable than other students. Analogous to our introduction of a human capital

type in equation (2), we allow the effect of these observable characteristics to enter through

a function µsi(xi), and we refer to this part of a student’s initial endowment as one’s “study

type.” Again noting that this function will be specified in Section 5 and suppressing the xi

portion of this notation, the cost function is

c(sit, s−it, µsi) = (χ1 + χ2γ(µsi)) sit +
χ3

2
s2it +

χ4

2

(
sit − (1 + χ5γ(µsi)) s

τs
−it

)2
. (3)

The exponent τs allows for curvature in how friend study time affects the costs of one’s own

17We define friend study time as the average study times of one’s friends. Our framework could also
accommodate specifications where friend study time was defined to be the total study time of one’s friends.

18We discuss below (in Section 4.2.1) how this specification of the cost function, which is commonly
referred to as featuring a “conformity” effect, is observationally equivalent with one in which friends’ study
choices directly influence the marginal costs of studying (i.e., in which there is no “target input”).
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studying. The function γ(·) shows how the study type enters the cost function. We define

γ(µsi) =
1

exp(τµ,1µsi + τµ,2µ2
si)
, (4)

which allows the cost function to vary across people of different study types. (We do not

include a fixed cost of studying because only 7% of all individual study time reports are zero,

and less than 2% of students report zero study time in all of their reports in a semester.)

Since it is always the function γ(µsi) (rather than µsi itself) that enters our specification,

we refer to γ(µsi) as the “effective study type”. The effective study type potentially enters

via two channels: by directly affecting the marginal cost of studying (via χ2γ(µsi)) and by

affecting how much the student’s marginal cost is affected by her friends’ study effort (via

χ5γ(µsi)). The latter term allows the “target” to which a student seeks to “conform” to

vary with the student’s characteristics. As we show just below when solving the model, the

effective study type may affect both the level of a student’s study effort and how responsive

the student is to her friends’ study effort. We conform to Blume et al. (2015) and assume

χ3 is positive and normalize it to one.19

With knowledge of {A1, A2}, all students’ human capital types {µyi}Ni=1 and all students’

study time types {µsi}Ni=1, students simultaneously choose study times to maximize utility,

which is separable across periods:20

u(si1, si2) =

{
2∑

t=1

y(sit, µyi)− c(sit, s−it, µsi)

}
. (5)

Remark 1. Before solving the model, it may be useful to include a brief discussion of what

may seem to be the somewhat spare specification laid out thus far. When developing our

model, we appealed to a subset of the peer effects literature that had specifically considered

what would be most important for generating social interactions in academic achievement in

the first-year college context that we study, our proposed mechanism being that friends’ study

time choices affect one’s own choice of study time and, thus, achievement (Stinebrickner

and Stinebrickner, 2006; Foster, 2006). That being said, one strength of our unique data is

that we are able to test this specification against others that have received attention in the

academic context, e.g., those including direct effects of peer characteristics in the production

19 This creates convexity in the cost function. Similar assumptions are used in papers positing a utility
function with a component in own effort that is quadratic with a fixed coefficient; see, for example, Blume
et al. (2015), p. 449 or 452. Papers that work directly with the best response function (see, e.g., equations
(1)-(2) of Moffitt, 2001 or equation (1) of Bramoullé et al., 2009) also implicitly impose similar assumptions.

20The alternative assumption, where students know only the current adjacency matrix when choosing their
study times and calculate expectations over the future adjacency matrix, would have identical predictions
in our model. See Section 4.1.
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of achievement (contextual effects) and those including production complementarities. We

discuss alternative specifications capable of generating endogenous social interactions in Sec-

tion 4.2. In a slightly different vein, we highlight here that the cost function does not include

an unobserved component (i.e., a structural error), such as a shock to the marginal cost of

studying. As described in Section 7.3, the results of our specification test suggest that such

unobservables are not particularly relevant given our context. As described in Sections7.4 and

7.5, our extensive testing of other specifications supports the parsimonious one we present

here.

4.1 Model Solution

Each student’s decision problem is additively separable across time periods, meaning each

student can solve each period’s problem separately.21 Student i’s best response to friend

study time in t is given by

sit = arg max
s∈[0,24]

{y(s, µyi)− c(s, s−it, µsi)}, (6)

with the natural constraints that study time is nonnegative and cannot exceed 24 hours per

day. The first order condition of (6) with respect to own study time yields ∂y
∂s

= ∂c
∂s
, i.e., the

utility-maximizing study time equates the marginal return for increasing study time with

the marginal cost. Expanding the first order condition and solving for own study time yields

the best response function, which expresses student i’s study time as a function of friend

study time, at an interior solution:

sit =
β2 − χ1

1 + χ4

+
−χ2

1 + χ4

γ(µsi) +
χ4

1 + χ4

sτs−it +
χ4 · χ5

1 + χ4

γ(µsi)s
τs
−it ≡ ψ(s−it, µsi). (7)

Equation (7) clearly shows that we allow for the possibility of finding no evidence of

endogenous social interactions, which would occur if we estimated that χ4

1+χ4
= 0. Note

that while best response functions depend on study type µsi, it is sometimes notationally

convenient to suppress the study type and write the best response function as ψi(s−it). We

restrict parameters so that own study time has a strictly positive intercept and is a weakly

increasing and weakly concave function of friend study time.22

21If utility were nonlinear in semester achievement or the argument of the cost function were study time
over the whole year, the problem would no longer be separable across time periods. We assume student
utility is linear in achievement because non-linearity of utility in achievement would be difficult to separate
from non-linearity in the cost function without relying on functional form restrictions.

22 The strictly positive intercept restriction corresponds to mini∈N{β2−χ1

1+χ4
+ −χ2

1+χ4
γ(µsi)} > 0. The

weakly increasing restriction corresponds to mini∈N{ χ4

1+χ4
+ χ4·χ5

1+χ4
γ(µsi)} ≥ 0. Weak concavity corresponds

to further requiring τs ≤ 1. These restrictions, combined with sit < 24, are sufficient to have the well-behaved
equilibrium described in Section 4.1.1. In practice, however, we are able to estimate the model using weaker
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As shown in Section 4.1.1, concave best response functions ensure existence of a unique

equilibrium for the study time game. As shown in equation (7), the separable form we adopt

for the cost function has the benefit of producing a closed-form solution for the student best

response function. We show in Appendix D.1 that concavity of the best response function

would result from any cost function possessing the natural properties of being strictly convex

in sit and weakly concave in s−it.

4.1.1 Equilibrium

Definition 1 (Period Nash equilibrium). A pure strategy Nash equilibrium in study times

S∗ = [s∗1, s
∗
2, · · · , s∗N ]

′ satisfies s∗i = ψ(s∗−i, µsi), for i ∈ N , given adjacency matrix A.

Claim 1. Let k = 24. There exists a unique pure strategy Nash equilibrium if ψi : R
N 7→ R

are weakly concave and weakly increasing, ψi(0) > 0, and ψi(k) < k for i ∈ N .

Proof. See Appendix D.2.

We compute the equilibrium by iterating best responses.23

4.2 Model Discussion

4.2.1 Other Mechanisms Generating Endogenous Social Interac-
tions

Cost Reduction Our specification of the cost function allows social interactions to emerge

from a force promoting conformity to a “target”.24 An alternative specification would allow

friend study effort to directly reduce one’s own cost of studying. We show in Appendix D.3.1

that such a specification can be observationally equivalent to the one we presented above.

Production Complementarities Another proposed mechanism is that social interac-

tions arise through production complementarities, where increases in peer inputs increase

the marginal product of one’s own input (e.g., Calvó-Armengol et al., 2009). From a concep-

tual standpoint, the decision to specify our model without production complementarities was

informed by the notion that friends in the first year of college may spend relatively little time

restrictions, described in Section 5.
23Convergence to the equilibrium is extremely fast in practice.
24 Note that a conformity mechanism could also naturally capture a “social learning” mechanism, wherein

students studied more or less, due to their friends’ studying more or less due to their updating about the
“true” productivity of study time. See Conley and Udry (2010) for an example disentangling social learning
about productivity from conformity (or mimicry) forces, using data on the timing of information arrival and
input decisions.
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talking about coursework, with some empirical support for this provided by Stinebrickner

and Stinebrickner (2006).25

That being said, we show in Appendix D.3.2 that in the typical case, where one only had

data on either the input (e.g., study effort) or output (e.g., achievement), our conformity-

based specification (or, equivalently, a cost-reduction-based specification) would be observa-

tionally equivalent to a specification exhibiting production complementarities. (This point

is also made by Blume et al., 2015.) Because we measure both inputs and outcomes, we are

in the unique position to examine the potential roles played by cost-based mechanisms and

production complementarities. As we discuss in Section 7.5, we do not find evidence for such

a mechanism in our context.

4.2.2 Dynamic Behavior

We assume the human capital type is constant between the periods. Though it would be

feasible to extend our static framework to a dynamic framework allowing the human capital

type to evolve between periods, the benefits of doing this are mitigated by two facts: (1)

we study students during their freshman year, which, under the liberal-arts curriculum at

Berea, is typically before they start taking a substantial amount of specialized course material

(meaning second semester coursework does not build heavily on first semester coursework),

and (2) each model period corresponds to a semester, which is shorter than the period

typically considered when estimating value-added production functions in an educational

context (see Hanushek, 1979; Todd and Wolpin, 2003, for discussions of issues related to the

estimation of education production functions). Consistent with these facts, as we discuss in

Section 7.6, we find that out-of-sample outcomes, simulated from parameters estimated on

only first-semester data, fit second-semester data quite well.

5 Estimation

The model provides a mapping from the adjacency matrix At and all the students’ types

{(µsi, µyi)}Ni=1 to a unique equilibrium in study times for all students, S∗
t . The equilib-

rium study times S∗
t generate achievement in equilibrium y∗it, via the production function

y(sit, µyi). The model is operationalized by parameterizing a student’s types as linear com-

binations of observable characteristics collected in a vector xi. That is, µsi = x′iωs and

µyi = x′iωy, where the parameter vectors ωs and ωy respectively determine study and human

capital types.26 The vector xi includes indicators for being black and being male, along

25Stinebrickner and Stinebrickner (2006) find that students spend very little time talking about coursework
with their roommates; it is not a big leap to imagine the same would be true of students and their friends.

26We set the coefficient on high school GPA in the study type ωs,HS GPA = 1 to identify τµ,1.
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with high school GPA, combined ACT score, average hours per week of study time in high

school, and expected hours per week of study time in college. This allows us to express

each student’s equilibrium study time and achievement as a function of At and all students’

characteristics, which we collect in a matrix X. Given the full set of model parameters

Γ = (β1, β2, χ1, χ2, χ3, χ4, χ5, ωs, ωy, τµ,1, τµ,2, τs)
′, we write these outcomes for individual i as

s∗it = ψ(s∗−it, µsi) = δsi(At, X; Γ) (8)

and

y∗it = y(s∗it, µyi) = δyi(At, X; Γ), (9)

where s∗−it is defined by applying equation (1) to S∗
t and At.

Our measure of y∗it, a student’s semester-level achievement, is the student’s semester

grade point average (GPA), denoted ỹit.
27 We treat GPA as a noisy measure of equilibrium

achievement, so with our parameterization: ỹit = δyi(At, X; Γ) + ηyit. The measurement

error ηyit is assumed to be mean independent of A and X, independent across students, but

allowed to be potentially correlated within student across time.

Our measures of s∗it, a student’s average daily study time over all days in a semester,

come from up to four 24-hour time diaries completed by each student i in semester t. Each

time diary provides a report of hours studied during the previous 24 hours. We use Rit to

denote the set of reports for student i in semester t, and study time report r for student

i in semester t is denoted s̃rit. We view each report as a noisy measure of s∗it, because on

any given day a student may study more or less than their semester-long average.28 Thus,

with our parameterization: s̃rit = δsi(At, X; Γ) + ηsrit, with ηsrit denoting a measurement

error that is assumed to be mean independent of A and X, independent across students, and

allowed to be potentially correlated within student across time.

We estimate our model by Non-Linear Least Squares (NLLS)29 combining the sum of

squared errors for both achievement and study time data.30 We obtain parameter estimates

27Course grades are measured on a four-point scale.
28Indeed, in previous research that specifically focused on measurement issues we found that substantial

within-person variation exists in daily study effort, even within a particular semester (Stinebrickner and
Stinebrickner, 2004).

29 Only a small number of our measurements are at their boundaries: 7% of student-semester GPA
observations are equal to four, 1% of student-semester GPA observations are zero, and 7% of individual
study time reports are zero. Parameter estimates (and their associated quantitative results) obtained when
using Tobit specifications for GPA and reported study time are virtually identical to those obtained from
the specification presented here. We focus on results from the least-squares estimation criterion, which does
not explicitly account for boundary values of GPA or reported study times, because it is tightly linked with
the specification test statistic discussed in the next section.

30 Although we estimate our parameters jointly, our achievement equation estimation procedure can be
viewed as utilizing a constructed “first stage” estimate of study time, which is ultimately based on our
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as the minimizers31 of: ∑
i

∑
t

(ηyit)
2 +

∑
i

∑
t

∑
r∈R(i,t)

(ηsrit)
2. (10)

Our estimator is consistent under standard regularity conditions for NLLS estimators,

augmented with rank conditions for identification involving At discussed in Appendix F. In

order to demonstrate that identification is not dependent on an absence of contextual effects,

we also discuss in that appendix identification of an augmented model with contextual effects,

where friends’ characteristics enters a student’s best response function. The key identification

conditions are analogous to those in Proposition 1 from Bramoullé et al. (2009) or Theorem

4(iii) from Blume et al. (2015).

6 Specification Test Rationale

We propose a specification test based on the cross-sectional correlation in study time resid-

uals. In addition to serving as an overall test of proper specification, it will in general have

power to detect unobserved determinants of study time best responses because they induce

cross-sectional correlation in residuals. Potential unobservables include, for example, an ex-

ogenous structural error or even unobservables that are correlated with other determinants

of study time. In this section we discuss an alternative data generating process (DGP)

with an omitted unobserved determinant of study time to illustrate how, in general, our

social interactions model implies that such alternative DGPs would induce cross-sectional

correlations in residuals across students because they would enter students’ best responses

in equilibrium. In contrast, under the null hypothesis of a properly specified model, study

time residuals would have zero cross-sectional correlation.

Letting Γ̂ denote the vector of estimated parameters, the study time residual for student

i, report r, in semester t is

η̂srit = s̃rit − δsi(At, X; Γ̂). (11)

Any test for a zero cross-sectional correlation in these residuals could be used. We present

our test statistic in Section 7.3, which pools these residuals across multiple reports r and

semesters t.

estimates of δsi, not observed study time.
31 Recall that we assume that best response functions are strictly positive, nondecreasing, and weakly

concave (and that best responses are strictly less than 24 hours/day). These restrictions are difficult to
directly impose in terms of restrictions on the parameter space when there is heterogeneity in best response
functions. Therefore, we adopt an indirect approach, of verifying whether some best response functions
derived from posited parameters satisfy the restrictions. Specifically, when estimating the model, we use the
weaker restrictions that the 75th percentile effective study type’s best response function is nonnegative and
that equilibrium study times are strictly positive. As we show in Section 7, none of any of the stronger (or,
consequently, weaker) restrictions are close to binding at our estimated parameters.
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Alternative DGP with an omitted unobserved determinant of study time We

proceed by considering how the study time component of our model would be altered by

the presence of an unobserved determinant of study time. For ease of exposition in the

remainder of this section, we assume there is one study time report and one period, which

allows us to simplify notation by dropping the r and t subscripts. We examine the special

case with τs = 1. This case is consistent with our baseline empirical results, where we find

that best response functions are linear (see Section 7).

Using a composite parameter χ0 ≡ [β2−χ1

1+χ4
], define the subset of parameters identified by

just equation (7), the student’s best response function, as Γ2 = (χ0, χ1, χ2, χ4, χ5, ωs, τµ,1, τµ,2)
′.

To simplify notation, we refer to the terms in (7), [χ0 +
−χ2

1+χ4
γ(µsi)] and [ χ4

1+χ4
+ χ4·χ5

1+χ4
γ(µsi)],

as f1(xi; Γ2) and f2(xi; Γ2), respectively. As in Section 5, xi contains student i’s observed

characteristics, which enter the best response function through effective study type γ(µsi).

The best response equation for an individual student is

si =f1(xi; Γ2) + f2(xi; Γ2)s−i. (12)

In order to represent the system of equations for all students in a vector S, use F1(X; Γ2)

to denote a column vector stacking the f1(xi; Γ2) for all i. We use the notation W (X; Γ2)

for a matrix that has zeros in the same positions as the zeros in A and nonzero entries in

locations where A has ones. In place of the ones in row i of A, W (X; Γ2) contains

1∑N
j=1A(i, j)

[f2(xi; Γ2)]. (13)

The system of equations is thus

S = F1(X; Γ2) +W (X; Γ2)S. (14)

Note that (14) is simply a re-written version of the model we developed in Section 4, but

with linear best response functions. Solving for S, we obtain the equilibrium vector of study

times

S∗ = (I −W (X; Γ2))
−1[F1(X; Γ2)], (15)

where the right side corresponds to the vector stacking δsi(A,X; Γ) for all students.

Incorporating our idiosyncratic error ηsi, we obtain the DGP for observed study time S̃

under the null hypothesis of correct specification:

S̃ = (I −W (X; Γ2))
−1[F1(X; Γ2)] + ηs, (16)

where ηs stacks the ηsi for all the students.
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Now consider an alternative scenario in which our model was misspecified. In particular,

suppose a vector of characteristics V was omitted by the econometrician but was observed

by all students, entering the best response system in the following manner:

S = F1(X; Γ2) +W (X; Γ2)S + V. (17)

Again solving for S, the equilibrium system of equations has the following form:

S∗ = (I −W (X; Γ2))
−1[F1(X; Γ2) + V ]. (18)

In general, the matrix (I−W (X; Γ2))
−1 will have many non-zero entries because students will

typically be directly or indirectly connected to many other students. Therefore, many, if not

all, elements of V will influence a given student’s equilibrium study time in this alternative.32

Decompose V into two components according to:

V = Π(X) + u, (19)

where we assume that u is mean zero conditional on X and A. We are agnostic about corre-

lation patterns in u across students; in particular, friends may have correlated u. Consider,

for example, a scenario where male and female students have the same expected value of u,

but where a (mean-zero) sex-specific shock induces correlations among students of the same

sex, who are likely to be friends with each other. Substituting this expression for V into

(18) and incorporating our error ηs gives the data generating process for observed study time

under the alternative hypothesis :

S̃ =(I −W (X; Γ2))
−1[F1(X; Γ2) + Π(X) + u] + ηs

=(I −W (X; Γ2))
−1[F1(X; Γ2) + Π(X)] + (I −W (X; Γ2))

−1u+ ηs. (20)

It is convenient to re-write (20) with a composite error ϵ:

S̃ =(I −W (X; Γ2))
−1[F1(X; Γ2)] + ϵ, (21)

where ϵ =(I −W (X; Γ2))
−1Π(X) + (I −W (X; Γ2))

−1u+ ηs.

Of course, residuals must be computed using estimates of Γ2, rather than the true value.

To derive the residuals ϵ̃, consider the least squares estimator of Γ2 in the study time regres-

sion, Γ̂2, i.e., the estimate of Γ2 that minimizes ϵ′ϵ in (21). The fitted values for S̃ using Γ̂2

are (I−W (X; Γ̂2))
−1[F1(X; Γ̂2)]. Let Γ̃2 denote the probability limit of Γ̂2. In large samples,

32 One implication of this is that, even if a subset of students had randomly assigned friends, the V of
non-randomly assigned, yet connected, students would affect their equilibrium outcomes.
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the fitted values of S̃ based on our estimator would then be (I −W (X; Γ̃2))
−1[F1(X; Γ̃2)],

which we can add and subtract from (21), resulting in

S̃ = (I −W (X; Γ̃2))
−1[F1(X; Γ̃2)] + ϵ̃, (22)

where

ϵ̃ = {(I −W (X; Γ2))
−1[F1(X; Γ2) + Π(X)]− (I −W (X; Γ̃2))

−1[F1(X; Γ̃2)]}︸ ︷︷ ︸
“prediction bias”

+ (I −W (X; Γ2))
−1u︸ ︷︷ ︸

equilibrium propagation of u

+ηs. (23)

The first term (“prediction bias”) in ϵ̃ is due to the omission of Π(·), i.e., it represents a

mean misspecification in (22). Γ̂2 will likely be inconsistent for Γ2 if Π(·) ̸= 0. The second

term is due to the influence of u upon equilibrium study effort. This second term is what

our specification test is designed to detect.

In general, our test will have power against the type of alternative DGP implied by (17),

because the error ϵ̃ will exhibit cross-sectional correlation when V ̸= 0. We show this by

considering cases (i) with zero prediction bias and (ii) with non-zero prediction bias.

In large samples, there would be zero prediction bias if there exists a Γ̈2 such that

F1(X; Γ̈2) nests F1(X; Γ2) + Π(X). This nesting could potentially be accomplished by

adopting a sufficiently flexible functional form for F1(·; ·). In such a case, although elements

of Γ2 could be inconsistently estimated (i.e., plim Γ̂2 ̸= Γ2), the conditional mean of the

outcome would still be properly specified. Thus, bias in Γ̂2 would not pervade to the residu-

als.33 In practice, however, a non-zero prediction bias is possible, as it may be necessary to

impose restrictions (based on the model or motivated by computational reasons) on F1(X; ·).
We discuss this below in case (ii).

Case (i): Zero prediction bias: Consider first the case with no prediction bias, leaving

us to focus on the u component of ϵ̃ in (23). In general, the term (I −W (X; Γ2))
−1u will

exhibit cross-sectional dependence because its elements are linear combinations of many of

the components of u.

In order for there to be no cross-sectional covariance in (I −W (X; Γ2))
−1u, the shocks u

would need to have a covariance matrix that was orthogonalized by (I −W (X; Γ2))
−1. For

33For example, this would be true in the commonly considered case where we can write F1(X; ∆1) = X∆1

and Π(X) = X∆2, where ∆1 and ∆2 are matrices of parameters, in which case the estimated ∆̂1 would have

plim ∆̂1 = ∆1 +∆2.
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example, consider the case where u was generated according to

u = (I −W (X; Γ2))e, (24)

with e IID and E [ee′] = I. For reasonable ranges of W (X; Γ2) in our application, such

a u process would possess strong negative correlations among closely linked students. For

example, consider our point estimate for Γ2, which we present in Section 7, and our adjacency

matrix for the first semester, A1. For the process in (24), in order for u to be orthogonalized

by (I −W (X; Γ2))
−1, the ratio of the average covariance of u between friends to the average

variance across students would have to be -0.31.

The main focus of the peer effects literature is on the case of positive assortative match-

ing.34 Therefore, we believe such a negative correlation is not the most salient one. Further

note that the necessary orthogonalization could not occur when u are independent in the

cross section. Moreover, even in the presence of negative cross-sectional correlations in u,

only specific correlation structures could produce the necessary orthogonalization.

Case (ii): Non-zero prediction bias: In the case where there is a prediction bias, our

test would not have power if the prediction bias term exactly offset cross-sectional correlations

in (I−W (X; Γ2))
−1u. For example, negative covariances in the bias term could, in principle,

exactly cancel with the positive covariances that we anticipate in (I −W (X; Γ2))
−1u. Our

strong prior is that this scenario is implausible, due to the positive covariances across friends

in their values of xi and a prior that Π(·) is a reasonably smooth function of xi. Intuitively,

because friends have similar observed characteristics (xi), the “prediction bias” error com-

ponents of students and their friends will likely be positively correlated. This also implies

that even if the u component were negligible, prediction bias could generate cross-sectional

residual correlations. Most importantly, prediction bias would have to exactly cancel out

the u component to result in zero residual correlation under the alternative DGP. Such a

problematic scenario would be a knife-edge case.

34Epple and Romano (2011) contains a thorough discussion of sorting in the presence of peer effects.
Zeitlin (2011) studies peer effects in a social learning context, finding that own and friend information
shocks are negatively correlated. This finding is unsurprising in a learning environment, where one may gain
more when one’s friends have different information.
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7 Estimation Results

7.1 Parameter Estimates

Table A4, in Appendix B, contains parameter estimates.35 The key parameter from the

achievement production function (presented in the top panel of the table) is the marginal

product of own study time on achievement, β2. The point estimate of 0.245 implies that

increasing own study time by one hour per day increases achievement by about a quarter

of a GPA point, ceteris paribus.36 Students with high GPAs in high school and high ACT

scores have significantly higher human capital, and black students have significantly lower

human capital.

As can be seen in equation (7), the curvature in the best response function is given by

τs, the exponent on s−it. We estimated the model allowing τs to be in the set [0,1], nesting

the assumption of a linear best response function (i.e., that τs=1). However, because our

initial estimation provided evidence that τs is indistinguishable from 1, we re-estimated the

model, fixing τs=1. We refer to the specification of our model specified in Section 4, with

τs = 1, as our baseline specification.

To ease the interpretation of the parameters governing the study cost function (which

appear in the second panel of Table A4), we substitute them into the best response function

(equation (7)), yielding

ψ̂(s−it, µ̂si) = {0.945︸ ︷︷ ︸̂
β2−χ1
1+χ4

+−0.085︸ ︷︷ ︸
−̂χ2
1+χ4

γ̂(µ̂si)}+ {1.304︸ ︷︷ ︸
χ̂4

1+χ4

+−0.874︸ ︷︷ ︸
χ̂4·χ5
1+χ4

γ̂(µ̂si)}s−it. (25)

The first bracketed term in equation (25) represents the intercept of the best response func-

tion for student i, i.e., how much this student would study even if her friends did not study

at all. This term consists of 0.945, the common component of the intercept across students,

and −0.085γ̂(µ̂si), the component characterizing variation in the intercept across students.

Likewise, the second bracketed term in equation (25) reveals the slope, or reactiveness, of

the best response function, that is, how a student’s choice of study time depends on the

study time of her friends. This term consists of 1.304, the common component of the slope

across students (our estimate of the common component of the slope has a standard error

of 0.2198), and −0.874γ̂(µ̂si), the component characterizing variation in the slope across

35The parameter estimates are in the appendix because it is much more convenient to directly examine
the best response functions formed from the structural parameters.

36 It is reassuring that this result is quantitatively similar to that from Stinebrickner and Stinebrickner
(2008a), who estimate that, for freshman at Berea, an extra hour per day of studying would increase GPA by
0.36 points (with a standard error of 0.183 points), using whether a randomly assigned roommate brought
a video game as a shifter for one’s own study time.
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students. With γ(µsi) =
1

exp(τµ,1µsi+τµ,2µ2
si)
, the latter component in both the first and second

bracketed terms depends on the estimated values of τ̂µ,1 = 0.105 and τ̂µ,2 = −0.003, which

indicate that γ(·) is decreasing and convex in one’s study type, µs. In turn, the value of one’s

study type, µs, is determined by the cost function parameters ωs; study type is increasing

in high school GPA and high school study time, but is smaller for males.37

To provide a better sense of the total effect of peer study effort in the best response

functions, Table 3 calculates equation (25) for the lowest, 25th percentile, median, 75th

percentile, and the highest effective study types, presenting the type-specific intercept (i.e.,

the first bracketed term in equation (25)) in the top row and the coefficient on friend study

time (i.e., the second bracketed term in equation (25)) in the bottom row. The first row

shows that there is little heterogeneity in the intercepts of best response functions. The

second row shows how reactiveness to peer study time increases in effective study type. The

effect of peer study time is significantly positive for all effective study types, including the

lowest effective study type (first column of the table).38 Combining the slope and intercept

terms, one’s optimal study choice is increasing in effective study type. Moreover, the best

response is always increasing in s−it and is often substantial.39

Table 3: Estimated study best response functions for different effective study types γ̂(µ̂s)

Effective study type γ̂(µ̂s): Lowest 25th pctile Median 75th pctile Highest
Intercept 0.86 0.88 0.89 0.90 0.91
Coefficient on s−it 0.47 0.65 0.73 0.81 0.94
Note: Own and friend study times are measured in hours/day. Each column represents the
estimated best response function for an effective study type. For example, the middle column
indicates that the median effective study type has the estimated best response function sit =
0.89 + 0.73s−it.

To get a sense of whether the estimated heterogeneity in reactiveness is significant, in

Table 4 we present 95% confidence intervals for differences in best response slopes for dif-

ferent groups of students. Females have significantly steeper best response functions than

males, students with above-median high school GPAs have significantly steeper best response

37Though Black students study considerably more than nonblack students, the coefficient on being Black
is negative. Black students have much higher high school study levels, which we find to be an important
determinant of study type.

38The flexible specification we have developed to allow for heterogeneity in best response functions makes
it difficult to discern whether the slopes of best response functions are significantly positive via direct
examination of parameters in Table A4. Therefore, we adopted a conservative approach to assess statistical
significance. We computed the 95% confidence interval for the best response slope for each student and then
examined whether any of these confidence intervals contained zero; the lower bound on the union of these
confidence intervals is 0.163.

39As noted in Section 5, we did not need to impose that best response functions are increasing in estima-
tion.
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functions than those with below-median high school GPAs, and students with above-median

high school study time have significantly steeper best response functions than those with

below-median high school study time. Our estimates indicate that the game exhibits a po-

tential complementarity. If matched by study type, students may study more in total, and

therefore, have higher total achievement. However, whether students will take advantage of

this complementarity depends on how they sort into friendships.

Table 4: Means and 95% confidence intervals for difference in slope of best response function,
by group

Comparison Mean 2.5% 97.5%
Female-Male 0.050 0.014 0.101
Black-Nonblack 0.015 −0.010 0.042
High HS GPA-Low HS GPA 0.032 0.015 0.052
High Study HS-Low Study HS 0.169 0.074 0.288
“High-” and “Low HS GPA” respectively refer to above- and below-
median high school GPA. “High-” and “Low Study HS” respectively
refer to above- and below-median high school study time.

Figure A3, in Appendix C, shows that the model closely fits mean observed study time

(left panel) and GPA (right panel), both in total and by student characteristics.40 Figure

A4, in Appendix C, plots own versus friend study time, for both the data (solid red line)

and simulated outcomes (dashed blue line). Even though the relationship between own and

friend study time is not explicitly targeted (i.e., friend study time outcomes do not enter the

likelihood), the model also closely captures this relationship.

In the remainder of this section we discuss potential endogeneity problems, present the

results from our specification test, and present evidence about the robustness of our estimates

to changes in model specification.

7.2 Endogeneity

Our primary endogeneity concerns arise from the potential for the relationship between a

student’s study effort and that of her peers to be due, in part, to friendships being formed on

the basis of potentially unobserved determinants of study time. One possible concern is that

the relationship between own and friend study time is driven by institutional factors. One

prominent example is that if students in science courses tend to study more and befriend

students in their courses, there may be a spurious relationship between own and friend study

time. We find that a version of the descriptive regression in Table 2, including both own

40Model outcomes are simulated by first solving for equilibrium outcomes given Γ̂ and then applying
measurement errors, using the specification in Section 5.
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and friend fraction of courses which are science, does not appreciably change the partial

correlation between own and friend study time (0.166 vs. 0.160).41 This is not surprising

given that students may make friends outside their classes and that, as discussed previously,

students’ freshman years are largely standardized in terms of curriculum. In the same vein,

dormitories are not specialized at Berea (e.g., there are not “study” dormitories or separate

dormitories for student athletes).

Perhaps a more important concern is that students arrive at school with differing propen-

sities to study, which affects how they sort into friendships. We address this concern by

taking advantage of our survey collection to obtain direct measures of students’ propensities

to study. Our baseline survey elicited information about: 1) how much a student expected

to study in college and 2) how much a student studied in high school. As we discussed

in Section 3.2, these measures of the propensity to study clearly have content, as they are

strongly correlated with how much a student studies. We stress a crucial feature of this

information on study propensity is that our survey design allowed this information to be

collected immediately after students arrived on campus, before students could be influenced

by their friendships at Berea.

As is always the case, it is difficult to know a priori whether observable characteristics

can address potential endogeneity concerns. Therefore, we next present results from our

specification test, which was designed to detect a wide variety of unobserved determinants

of study time, in particular, those underlying endogeneity concerns.

7.3 Specification Test Results

This section begins by showing how we implement a cross-sectional correlation specification

test using our data for two periods (semesters) and multiple study time reports. Recall that

predicted equilibrium study time for student i in semester t is δsi(At, X; Γ̂). We define i’s

semester-t study time residual as the average residual over i’s semester-t study time reports,

s̃rit:

η̂sit ≡
1∑

r∈Rit
1

∑
r∈Rit

(
s̃rit − δsi(At, X; Γ̂)

)
. (26)

To implement the test, we average students’ residuals over both semesters, i.e., η̂si =
η̂si1+η̂si2

2
.

We then compute the average of friends’ average residuals for each student in each semester

according to η̂s,−it =
∑N

j=1 At(i,j)η̂sj∑N
j=1 At(i,j)

. Our test statistic is the cross-sectional correlation between

η̂si and η̂s,−it, pooled across semesters. Under the null of proper specification this correlation

is zero.

In our baseline specification, in which our new measures of study propensity (high school

41See Table A9 in the appendix.
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study time and expected study time) enter students’ study types, our specification test

statistic has a p-value of 0.6694, corresponding to a correlation between own and friend study

time residuals of 0.021.42 Thus, our test results suggest that our model is well-specified.43

In particular, there is no evidence of an endogeneity problem arising from students positively

sorting into friendships based on unobserved determinants of study time.

In the presence of an omitted characteristic, which may generate an endogeneity problem,

our test should indicate a relationship in own and friends’ residuals. To demonstrate that

our test can detect a relationship in such a scenario, we construct an example where there is

likely an endogeneity problem, by estimating a restricted version of our model in which we

purposefully omit our novel measures of study propensity. Notably, this restricted specifica-

tion uses only measures of student characteristics that are typically available to researchers.

Because our empirical results show that these measures are both determinants of study time

and also related to our measures of incoming human capital and friendship choices, their

omission should generate a correlation across friends’ residuals. The estimated correlation

test statistic in this scenario is 0.2111, with a p-value of 0.000022, providing strong evidence

against the null hypothesis of zero correlation.

Taking these two residual correlations together, our test results show that our new mea-

sures of study propensity play a crucial role in addressing endogeneity concerns in our con-

text.44 Our specification test results also suggest that exogenous, structural errors of the

type typically considered in the spatial econometrics literature (see, e.g., Anselin, 1988) do

not likely play an important role in our context. Intuitively, structural errors would have

induced correlations in friends’ residuals, which would be detectable by our specification test.

7.4 Human Capital Spillovers (“Contextual Effects”)

We have focused on a mechanism wherein friend study time may affect one’s own study

time, which in turn may affect one’s achievement via a production function. An alternative

42We use a distribution approximation for this test that allows correlation within students.
43 While the results from our specification test suggest that the model is well-specified, a researcher may

nevertheless wish to include exogenous structural errors to best response functions. To accomplish this,
one could modify the criterion function used to estimate our model to accommodate the resulting error
structure. However, it is important to note that the estimated best response functions we obtain from using
our (least-squares) estimation criterion would be robust to the presence of the type of error described just
above. Therefore, estimates of average treatment effects from either counterfactual exercise (unconditional
or conditioning on, e.g., student race), which represent our primary quantitative findings, would not be
affected.

44 While our study propensity measure captures salient determinants of freshman study effort, our ap-
proach treats this variable as exogenous at the beginning of university. Therefore, while we may (perhaps)
reasonably ascribe causal interpretations to our estimates, we do not have a model for how high school
study time itself is determined. While outside the scope of the current paper, examining this would be an
interesting area for future research.
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mechanism often considered in the literature involves peer characteristics directly entering

the achievement production technology (“contextual effects”). For example, friends with

high human capital may provide quick and reliable answers to questions or may know more

about specific course requirements, generating human capital spillovers.

Our a priori belief that a model without such spillovers may be quite natural is directly

related to the mechanism for social interactions that we examine. In the short run that we

study, it seems reasonable to believe that the primary reason a student’s academic perfor-

mance would be related to a particular observable characteristic of her friends is that the

student’s time-use is influenced by the good (or bad) study habits of friends with these char-

acteristics.45 Models estimated without study time information would label this relationship

as “contextual effects”. In contrast, in our approach, which is made possible by the collection

of time-use information, this relationship would be explicitly accounted for by our proposed

mechanism in which one’s study time is influenced by the study time of one’s peers, thus

removing a channel that would otherwise be labeled as “contextual effects”.

Nevertheless, because, in theory, there could be spillovers not captured by our pro-

posed mechanism, it is prudent to thoroughly examine whether friend characteristics ex-

plain achievement, even after accounting for our mechanism of interest. To this end, we

re-estimated the model using two alternative specifications. First, since a human capital

spillover would most naturally emerge from friend human capital types, we extend the tech-

nology (2) to allow for direct achievement transmission via human capital types:

y(sit, µyi) =β1 + β2sit + β3,contµy,−i,t + µyi, (27)

where µy,−i,t ≡
∑N

j=1 At(i,j)µyj∑N
j=1 At(i,j)

, i.e., the average of period-t-friend human capital types. This

specification’s parsimoniousness makes it attractive from a practical level, but it is also

conceptually attractive, as one would naturally expect friends with higher-than-predicted

achievement (i.e., those with higher own human capital types, µyj) to be those who would also

transmit more achievement to their friends. In this specification, a human capital spillover in

the production of student achievement would correspond to β3,cont ̸= 0. As discussed in detail

in Appendix E.1, we fail to reject that β3,cont is zero, with a point estimate of β̂3,cont = 0.176

that has an accompanying standard error of 0.142. In our second specification, also shown

in Appendix E.1, we show that the restriction that the determinants of one’s own human

capital type and one’s human capital spillovers on one’s friends are the same (to scale) does

not drive the lack of significance in the estimates of direct human capital spillovers.

45 Foster (2006) and Stinebrickner and Stinebrickner (2006), which are especially relevant because they
focus on first-year grade performance, suggest (and provide evidence) that peers may be most likely to
influence first-year grades by affecting time use.
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Because we have data on both inputs and outcomes, there is more than one place in which

contextual effects could enter our model. We chose the extensions described above instead

of, say, including a direct effect of friend characteristics in the cost function (3), because the

results from our specification test do not provide strong evidence of omitted characteristics

in the determination of study time choices.46

Altogether, these findings lead us to conclude that mechanisms involving a direct role of

friends’ characteristics in explaining achievement (either directly, or via study effort) are not

motivated in our application. Given our a priori belief that this would be the case, we have

therefore chosen to retain the specification without human capital spillovers as our baseline

specification.

7.5 Production Complementarities

As we show in Appendix D.3.2, our data on study time inputs and achievement outcomes

allow us to separately identify production complementarities from conformity-based mech-

anisms (which, as we show in Appendix D.3.1, are observationally equivalent to cost-based

mechanisms). As we discussed in Section 4.2.1, prior research suggests that production

complementarities may not be very large, because students are not obliged to talk about

coursework with their friends. However, given our unique ability to separately identify them

from other proposed mechanisms, it is prudent to examine the potential role they play in

determining study time and achievement. To this end, we also re-estimated the model using

a specification that extends the technology (2) to be

y(sit, µyi, s−it) = β1 + β2sit + β3,compsit · s−it + µyi, (28)

where sit is own study effort and s−it is friend study effort. If β3,comp > 0, then increases

in peer effort increase the marginal product of one’s own effort. As we discuss in Appendix

E.2, we fail to reject that β3,comp is zero, with a point estimate of β̂3,comp = −0.004 that

has an accompanying standard error of 0.033. This estimation result, combined with our a

priori belief that production complementarities would likely not play an important role in

our context, led us to retain the specification without production complementarities in the

technology as our baseline.

46Moreover, from a conceptual standpoint, it is a priori not obvious why friend characteristics, such as
their high school GPA, would relate to one’s own study time choices, after taking into account how much
friends study. That being said, as we discuss in Appendix F, the negative result of Manski (1993) does not
apply in our setting, meaning such contextual effects would be identified under the linear model.
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7.6 Dynamic Behavior and Model Validation

Our framework assumes that the human capital type is constant across semesters—that is,

first semester achievement does not increase students’ human capital at the beginning of

the second semester. While the discussion in Section 4.2.2 suggests that this is reasonable

from a conceptual standpoint, it is worth checking this assumption’s validity. In Appendix

E.3, we perform an out-of-sample test based on the intuition that, if the static assumption

were violated, a model estimated using only first-semester data might have difficulty fit-

ting second-semester outcomes. Indeed, such an exercise could also be useful in discerning,

more generally, whether the assumed micro-structure of our model (e.g., functional form

assumptions, etc.) does a reasonably good job of capturing our context. We find that the

second-semester fit is good, which provides some support for the notion that the static model

represents a reasonable approximation to reality.

8 Quantitative Findings

How much does it matter who your friends are? To help answer this question, we use our es-

timated model to conduct two counterfactual exercises. First, we characterize how students

respond to changes in friend study time by exogenously increasing (shocking) the study time

of each student and measuring how outcomes would change for other students in the network.

In addition to providing evidence about how network structure and student characteristics

jointly determine how students are affected by their peers, this exercise provides a natural

framework for quantifying the importance of equilibrium effects as well as the importance of

heterogeneity in the effect of peers. Second, because peer effects are a function of not only

how students respond to changes in peer inputs but also who is friends with whom, we exam-

ine how outcomes would differ if, instead of sorting into friendships as summarized in Table

1, students were randomly assigned friends. This exercise provides a natural comparison

point from which we can assess the importance of homophily in friendships.

Throughout this section, we compare outcomes between baseline and counterfactual sce-

narios for achievement, own study time, and friend study time. We use scfit and sbaselineit to

denote student i’s study time in the counterfactual and baseline scenarios, respectively. We

define the treatment effect on achievement for student i in period t as ∆y
it ≡ y(scfit, µyi) −

y(sbaselineit , µyi). Treatment effects for own and friend study time are defined analogously.
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8.1 Network Structure, Student Characteristics, and the Response
to Peer Input Changes

To provide quantitative evidence about how students respond to changes in peer study time,

we estimate the impulse response to an impulse of increasing study effort. Specifically, we

increase (shock) the study time of a single student by one hour per day over that student’s

baseline equilibrium study time in a particular semester and examine the responses of all

other students in the network in that semester. We summarize our findings when we perform

this exercise 614 times (once for each of the 307 students in each of the two semesters).

The averages in the first row of Table 5 show how the mean effect of the study shock

evaluated at the new equilibrium, i.e., taking into account the full set of feedback effects

in the network, varies with a student’s distance from the shocked student. For example,

to obtain the number in the second column we first compute, for each student j in each

of the two semesters t, the mean response in achievement for all students who are one link

away from j when j is shocked in semester t. Averaging this mean response over all shocked

students j and both semesters shows that students who are one link away from the shocked

student have an average achievement gain of 0.074 GPA points. Similarly, the third, fourth,

and fifth columns, respectively, show that students who are two links, three links, and four

links away from the shocked student, respectively, have average achievement gains of 0.021,

0.005, and 0.001 GPA points, respectively. The final column involves first computing, for

each student j in each of the two semesters t, the total response in achievement,
∑

i ̸=j ∆
y
it,

for all students (other than j) who are in the network when j is shocked in semester t.

Averaging this total response over all students and semesters shows that, on average, the

total effect of the shock is 0.48 GPA points.

Effects evaluated at the new equilibrium will be larger than partial equilibrium effects,

which only take into account how the shock to a student influences students who are directly

linked to her (i.e., iterating best response functions once). To quantify the importance of

this difference, the second row of Table 5 shows the partial equilibrium effects. The average

effect on students who are one link away from the shocked student is about 1/4 smaller

under partial equilibrium than when than under the new equilibrium (0.056 vs. 0.074 GPA

points), while, by definition, the effect on the (typically) large number of students who are

two or more links away from the shocked student is zero in the partial equilibrium case. The

last column shows that, on average, the total response of the shock is only 0.18 GPA points.

Therefore, if we considered only partial equilibrium effects we would, on average, understate

the achievement response by 63%.

We next examine how much the total response
∑

i ̸=j ∆
y
it varies, depending on which

student j is shocked in t. We find that the total response in achievement varies substantially
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Table 5: Average change in achievement (GPA points)

Avg. response, by distance from shocked node Total
Dist. from shocked stud.: 0 1 2 3 4 response
New equilibrium 0.245 0.074 0.021 0.005 0.001 0.481
Partial equilibrium 0.245 0.056 0.000 0.000 0.000 0.180
Note: The top row presents the mean effect on achievement (averaging over shocked students and
semesters) at the new equilibrium, by distance from shocked student, where the shocked student
has distance 0. The bottom row presents the mean effect on GPA immediately due to the impulse,
by distance from shocked student. The mean total response, in the last column, is the average
GPA response to shocking students j over periods t, excluding the effect on the shocked student,

i.e., 1∑
j,t 1

∑
j,t

(∑
i ̸=j ∆

y
it

)
.

depending on which student is shocked. For example, the first quartile, median, and third

quartile of the total increase in achievement at the new equilibrium are 0.31, 0.46, and

0.62 GPA points, respectively. Heterogeneity in effects will depend both on the location

of the shocked student in the network and the responsiveness of students that are close to

the shocked student. The importance of the former is explored in Appendix G, where we

explore the relationship between a node’s centrality and the effect of a shocked node. The

importance of the latter was the focus of Section 7.1. Here, we illustrate how the structure

of the social network interacts with the distribution of best response functions to produce

variation in achievement gains, by examining the subgraphs of the students within three

degrees of i) the student whose shock creates the largest total achievement response and ii)

the student whose shock creates the smallest total achievement response.

The left panel of Figure 1a shows the subgraph containing students within three degrees

of the student whose shock creates the largest total achievement response (1.20 GPA points).

The right panel shows the subgraph containing students within three degrees of the student

whose shock creates the smallest total achievement response (0.084 GPA points). In each

case, the shocked student is denoted by a red star. Squares represent males and circles rep-

resent females. Shapes corresponding to black students are shaded and those corresponding

to nonblack students are unshaded. The area of the circle or square representing a student

other than the shocked student is proportional to the slope of that student’s best response

function, where larger shapes correspond to more reactive students. Both subgraphs show

homophilous sorting: black students tend to be friends with other black students (and non-

black students with nonblack students), males tend to be friends with males (and females

with females). In general, students with steeper best response functions tend to be friends

with each other.

Differences in the total response can be due to differences in link structure and how

heterogeneous students are arranged on the network. The link structures of the subgraphs
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are very different. The shocked student in the left panel has more friends (7 vs. 1) and

more students within two and three degrees (respectively, 17 vs. 5 and 39 vs. 23).47 In

addition to the structure of links, how the heterogeneous students are arranged on the

network matters. Although the average slope of best response functions is roughly similar

between the subgraphs, 0.752 in the left vs. 0.681 in the right, the friends of the shocked

student in the left panel have steeper best response functions than the friend of the shocked

student in the right panel. In the right panel, the shock is immediately dampened by being

passed through the student’s only, relatively nonreactive friend.

Figure 1b shows the analogous plot, where the area of the shape is now proportional to

the achievement gain for that student. The effect of the shock dies off in the same pattern

illustrated by the first row of Table 5, that is, shapes further from the star tend to be smaller.

Friends of the shocked student in the left subgraph gain much more than the friend of the

shocked student in the right subgraph. Due to the much steeper best response functions of

the shocked student’s friends, the impulse dies out much less quickly in the left subgraph.

Indeed, the gains for students who are two links from the shocked student in the left subgraph

are about as large as the gain for the student directly connected to the shocked student in

the right subgraph. This persistence comes from both the steeper best response functions

of direct friends of the shocked student and the fact that many of them are also connected

to each other, further augmenting the effects of the shock through feedback. This implies

the effectiveness of policies targeting students may depend critically on how they fit into the

arrangement of the social network.48

8.2 The Effect of Sorting into Friendships

Section 8.1 studied how students respond to the input choices of others, taking into account

the baseline network, which exhibits homophily. To directly examine homophily and, there-

fore, provide further evidence about the importance of peers, we compare achievement under

the baseline social network with achievement under a counterfactual where friends are homo-

geneously distributed across students. In this counterfactual, for each semester, we maintain

the marginal distribution of friends per student observed in the data, but replace reported

links with random draws from the entire sample of students. We then form a counterfactual

symmetrized A matrix in the same manner as it was formed for the actual data, as described

in Section 3. Repeating this process 300 times for each of the two semesters produces 300

47We limit this illustration to students within three degrees, based on the first row of Table 5 (which
shows the total impact dies off quite quickly in distance from the shocked student).

48See Fryer (2011) for an example in which students are incentivized based on inputs to achievement.
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Figure 1: Subgraphs corresponding to students producing the largest and smallest total
achievement responses

(a) Slope of best response functions for students within three degrees of the student producing largest
total response when shocked (left) and smallest total response when shocked (right)

(b) Gain in achievement for students within three degrees of the student producing largest total response
when shocked (left) and smallest total response when shocked (right)

Note: Red star indicates shocked student, males are square (females are circles), black students are shaded
(nonblack students are unshaded), and area of squares and circles is proportional to outcome of interest for
corresponding students (i.e., (a) slope of best response function or (b) gain in achievement from shocking
starred student)
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pairs of simulated adjacency matrices.49

Table 6 summarizes changes in model outcomes between the baseline and counterfactual,

averaged over all simulations. Achievement is measured in GPA points and study times are

in hours per day. The first column shows the average change in study time, across all stu-

dents and all simulated networks, that results from moving to homogeneous (i.e., randomly

assigned) friends. The first row shows that, on average, moving to this counterfactual would

reduce own study time by 0.09 hours. Intuitively, students who under the baseline have

friends with high study types are most harmed by the move to a homogeneous distribution,

which makes them much more likely to have lower study type friends. This explains why

females, black students, and students with above-median high school GPAs, who tend to be

high study types and are seen in Table 1 to often have friends with high-study-type character-

istics under the baseline, see own study time fall by 0.18, 0.24, and 0.14 hours, respectively.

Conversely, males, who have less studious peers under the baseline, tend to study more

when friends are homogenized. Importantly, the estimated complementarities, which arise

due to the heterogeneity in best response functions combined with sorting into friendships

based on effective study type, imply that the gains of lower study types are smaller than

the losses of the higher study types. Accordingly, the standard deviation of own study time

drops by 30%. This explains the overall decrease in own study time. Removing the sorting

in the manner of our experiment does not merely re-allocate output, but also lowers total

output. A similar story drives both the overall results and the stratified results associated

with changes in friend study time in the second column of Table 6.

The third column of Table 6 shows the average change in achievement across all students

and all simulated networks that result from the changes in study time found in the first

column. The first row shows that, on average, moving to the counterfactual would reduce

achievement by 0.02 GPA points. However, as expected given the findings of study time, the

declines are largest for black students, female students, and students with above-median high

school GPAs. As before, the losses to these groups are not offset by the gains to other groups.

Homogenizing the distribution of friends’ characteristics would increase the baseline GPA

gap between nonblack and black students of 0.5 GPA points by 11% (black students study

more than white students in the baseline), reduce the baseline GPA gap between female

and male students of 0.31 GPA points by almost 20% (female students study more than

male students in the baseline), and reduce the baseline GPA gap between students with

49For example, in the first semester the algorithm starts with IID draws of counterfactual “friends per
student” from the empirical marginal distribution of friends per student in A1, divided by two and rounded
to the nearest integer, because A1 has been union-symmetrized. The number of directed links per student
is set to the student’s “friends per student” draw. Directed links are IID draws from the whole set of other
students.
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above-median and below-median high school GPAs of 0.60 GPA points by 5% (students

with above-median high school GPAs study more than those with below-median high school

GPAs in the baseline). Overall, homogenizing friends would reduce the standard deviation

of achievement by 4%. However, while reducing homophily could reduce inequality, it would

do so at the expense of reducing total achievement.

Table 6: Average changes for study time (hours/day) and achievement (GPA points) result-
ing from counterfactual homogeneous distribution of friend characteristics, across simulated
networks

Own study time Friend study time Achievement
(1) (2) (3)

Total -0.086 -0.080 -0.019

Nonblack -0.056 -0.025 -0.009
Black -0.238 -0.344 -0.063

Female -0.179 -0.221 -0.043
Male 0.045 0.108 0.013

Below-med. HS GPA -0.026 0.021 -0.003
Above-med. HS GPA -0.136 -0.177 -0.034
Note: Means are computed over simulated networks.

Finally, we provide a back-of-the-envelope calculation to anchor our findings about the

effects of this counterfactual to graduation rates, an outcome of particular interest to pol-

icymakers. We do this by estimating the mapping between first year achievement and the

probability that a student graduates from college within ten years of starting university.50

The share of students graduating would fall slightly (about half a percentage point, from a

baseline graduation rate of 75%) under the counterfactual assignment of friends. However,

as expected given our previous results, there are non-trivial differences in the effects across

groups. For example, while the share of female students graduating would decrease by 1.5

percentage points (from a baseline graduation rate of 84%), the share of male students grad-

uating would increase by almost one percentage point (from a baseline graduation rate of

62%). While the share of black students graduating would decrease by 2.8 percentage points

(from a baseline graduation rate of 69%), the share of nonblack students graduating would

essentially remain the same (i.e., at the baseline graduation rate of 76%). These changes are

not trivial when compared to the size of other effects in the literature. For example, Bel-

ley and Lochner (2007) find that moving from the lowest to highest income quartile would

increase college graduation rates by 10 percentage points.

50Details are in Appendix H.1.
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9 Conclusion

This paper presents an equilibrium model of student study time choices and the production

of achievement. Social interactions are present because costs of study time for a student

depend on the study times of that student’s peers. We estimate this model and provide

evidence that this mechanism is important in the production of academic achievement. Our

approach was made possible by three key features of the BPS: direct measurements of study

time, measurements of a social network for a cohort of Berea students, and measures of

student propensities to study. We develop a specification test that can detect unobserved

determinants of study time. The results of our specification test suggest that our study

propensity measures play a crucial role in addressing endogeneity concerns.

We use the structural model to examine counterfactuals that are informative about the

role of network feedback effects and sorting in peer characteristics. Heterogeneity in student

characteristics and how students are interconnected determine the distribution of responses

to changes in a student’s study time. Our structural approach provides a very clear and

intuitive interpretation for quantities of policy interest. For example, we estimate substantial

best response heterogeneity, wherein the most reactive student has a best response function

slope that is twice as steep as that of the least reactive student. Our results indicate that

equilibrium effects, mediated by the whole social network, are quantitatively important in

determining the responses of network-wide study time and achievement to shocks in study

time. In addition, our results indicate that homophily, or sorting in peers’ characteristics,

plays an important role in the production of achievement. For example, homogenizing friends

would reduce average achievement and the standard deviation of achievement.
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A Data

A.1 Survey Questions

Figure A1: Time diary question
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Figure A2: Friends question
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A.2 Summary Statistics Tables

Table A1 shows descriptive statistics of student characteristics. The first row in each of the

six panels shows overall descriptive statistics for the variable of interest described in the first

column. Forty-four percent of students are male, 18% of students are black, the mean high

school grade point average for the sample is 3.39, the mean combined score on the American

College Test (ACT) is 23.26, and, on average, students studied 11.24 hours per week in high

school and expect to study 24.96 hours per week in college. The subsequent rows in each

panel show descriptive statistics for the variable of interest in the first column for different

subgroups. For example, the third panel shows that, on average, males have lower high

school grade point averages than females (3.24 vs. 3.51) and black students have lower high

school grade point averages than nonblack students (3.14 vs. 3.45). The fifth panel shows

that black students studied more, on average, in high school than other students (15.29 vs.

10.36).51

Table A2 shows descriptive statistics of outcomes during the first year. The first rows

of panels 1 and 2, respectively, show that, on average, students study 3.49 hours per day in

the first semester and 3.50 hours per day in the second semester.52 The subsequent rows

of the first two panels show that, on average, males study less than females, black students

study more than nonblack students, and students with above-median high school GPAs study

more than students with below-median high school GPAs.53 The first rows of panels 3 and

4, respectively, show that the average first semester GPA is 2.89 and the average second

semester GPA is 2.93. The subsequent rows of the third and fourth panels show that males,

black students, and students with below-median high school GPAs all have lower average

GPAs than their counterparts.54

51The first two differences in means are significantly different at the 0.001 level. The averages of high
school study time for black students and nonblack students are significantly different at the 0.01 level.

52Descriptive statistics about study time outcomes presented in Table A2 are computed at the level of
individual study time reports, of which there may be up to four in each semester, for each student. When
computing other descriptive statistics (including regressions), we use the semester-specific average (over the
study time reports) for each student The two measures are very similar, other than the larger variance of
the individual-report-based measure. As we make clear when we describe our estimation procedure, we use
individual study time reports when estimating the structural parameters of our model.

53Pooling observations from both semesters, the first and last differences in means are significantly different
at a 0.05 level and, given the relatively small number of black students, the middle difference in means is
significant at a 0.10 level.

54Pooling observations from both semesters, all of these differences are significant at a 0.05 level.

41



Table A1: Own summary statistics

Variable Group N Mean SD Min q1 q2 q3 Max
(1) Male indicator all 307 0.44 0.5 0 0 0 1 1

black 55 0.45 0.5 0 0 0 1 1
nonblack 252 0.43 0.5 0 0 0 1 1
above-med. HS GPA 155 0.33 0.47 0 0 0 1 1
below-med. HS GPA 152 0.55 0.5 0 0 1 1 1

(2) Black indicator all 307 0.18 0.38 0 0 0 0 1
male 134 0.19 0.39 0 0 0 0 1
female 173 0.17 0.38 0 0 0 0 1
above-med. HS GPA 155 0.10 0.31 0 0 0 0 1
below-med. HS GPA 152 0.26 0.44 0 0 0 1 1

(3) HS GPA all 307 3.39 0.47 1.68 3.09 3.50 3.80 4.00
male 134 3.24 0.51 1.68 2.9 3.21 3.7 4.00
female 173 3.51 0.40 2.13 3.30 3.60 3.85 4.00
black 55 3.14 0.46 2.24 2.78 3.1 3.52 4.00
nonblack 252 3.45 0.46 1.68 3.19 3.53 3.8 4.00
above-med. HS GPA 155 3.77 0.17 3.5 3.6 3.8 3.9 4
below-med. HS GPA 152 3.00 0.35 1.68 2.8 3.08 3.29 3.47

(4) ACT all 307 23.26 3.61 14 21 23 26 33
male 134 22.54 3.77 14 20 23 25 31
female 173 23.82 3.39 17 21 24 26 33
black 55 19.91 2.51 14 18 20 21 25
nonblack 252 23.99 3.4 14 22 24 26 33
above-med. HS GPA 155 24.45 3.53 17 22 25 27 33
below-med. HS GPA 152 22.04 3.28 14 20 22 24 31

(5) HS study all 307 11.24 11.35 0 4 8 15 70
male 134 11.43 11.94 0 3.12 8 15 70
female 173 11.10 10.9 0 4 9 15 70
black 55 15.29 14 0 5 10.5 20 70
nonblack 252 10.36 10.51 0 3 7 14 70
above-med. HS GPA 155 10.66 10.44 0 4 8 14.5 70
below-med. HS GPA 152 11.84 12.21 0 3.38 8.25 15 70

(6) Expected study all 307 24.96 11.61 0 17 23 31 64
male 134 22.72 11.08 0.97 16 20.75 27.38 64
female 173 26.68 11.74 0 19 25.5 33 57.5
black 55 28.56 13.56 0 19 25 38.5 57.5
nonblack 252 24.17 11.01 0 17 22.5 30.62 64
above-med. HS GPA 155 25.18 10.47 0 18 23.5 32 56
below-med. HS GPA 152 24.72 12.69 0 16 22.25 30.12 64

Note: The rows in each panel show descriptive statistics for the variable of interest in the first column, for the group in the second column. GPA
is measured in GPA points (0-4). HS study and expected study are measured in hours/week.
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Table A2: Own summary statistics for outcomes, by semester

Variable Group N Mean SD Min q1 q2 q3 Max
(1) Sem. 1 Own study all 955 3.49 2.23 0 2 3.25 4.67 16

male 401 3.23 2.38 0 1.67 3 4.33 14.67
female 554 3.68 2.1 0 2 3.33 5 16
black 158 3.83 2.23 0 2.33 3.41 5.33 11.67
nonblack 797 3.43 2.23 0 2 3 4.67 16
above-med. HS GPA 518 3.62 2.27 0 2 3.33 5 16
below-med. HS GPA 437 3.34 2.17 0 2 3 4.67 14.67

(2) Sem. 2 Own study all 945 3.5 2.12 0 2 3.33 4.67 14.33
male 384 3.22 2.11 0 2 3 4.33 12
female 561 3.7 2.11 0 2 3.33 5 14.33
black 169 3.75 1.98 0 2.33 3.33 5 9.67
nonblack 776 3.45 2.15 0 2 3.31 4.67 14.33
above-med. HS GPA 513 3.66 2.06 0 2 3.33 5 12
below-med. HS GPA 432 3.32 2.18 0 2 3 4.67 14.33

(3) Sem. 1 GPA all 307 2.89 0.78 0 2.49 3.06 3.46 4.00
male 134 2.72 0.80 0.30 2.17 2.80 3.29 4.00
female 173 3.02 0.74 0 2.66 3.13 3.55 4.00
black 55 2.42 0.78 0 1.82 2.57 2.84 4.00
nonblack 252 3.00 0.74 0.3 2.58 3.11 3.55 4.00
above-med. HS GPA 155 3.19 0.62 0.52 2.81 3.29 3.69 4.00
below-med. HS GPA 152 2.59 0.8 0 2.00 2.66 3.12 4.00

(4) Sem. 2 GPA all 301 2.93 0.78 0 2.53 3.05 3.46 4.00
male 131 2.74 0.84 0 2.38 2.82 3.33 4.00
female 170 3.07 0.71 0.44 2.66 3.20 3.54 4.00
black 53 2.58 0.86 0.44 2.22 2.62 3.33 3.78
nonblack 248 3 0.75 0.00 2.58 3.08 3.5 4.00
above-med. HS GPA 155 3.21 0.66 0 2.82 3.36 3.74 4.00
below-med. HS GPA 146 2.63 0.79 0.26 2.15 2.66 3.24 4.00

Note: The rows in each panel show descriptive statistics for the variable of interest in the first column, for the group in the second column. GPA
is measured in GPA points (0-4). Own study is measured in hours/day and in this table is reported at the individual study report level.
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Table A3: Average friend summary statistics, pooled over both semesters

Variable Group N Mean SD Min q1 q2 q3 Max

(1) Num. friends all 614 3.31 1.58 1 2 3 4 10
male 268 3.22 1.59 1 2 3 4 10
female 346 3.38 1.57 1 2 3 4 9
black 110 3.21 1.35 1 2 3 4 7
nonblack 504 3.33 1.62 1 2 3 4 10
above-med. HS GPA 310 3.34 1.62 1 2 3 4 10
below-med. HS GPA 304 3.28 1.53 1 2 3 4 8

(2) Frac. male friends all 614 0.43 0.39 0 0 0.33 0.75 1
male 268 0.74 0.31 0 0.5 0.82 1 1
not male 346 0.18 0.25 0 0 0 0.33 1
black 110 0.43 0.4 0 0 0.33 0.83 1
not black 504 0.42 0.39 0 0 0.33 0.75 1
above-med. HS GPA 310 0.35 0.38 0 0 0.25 0.67 1
below-med. HS GPA 304 0.5 0.39 0 0 0.5 1 1

(3) Frac. black friends all 614 0.18 0.32 0 0 0 0.25 1
male 268 0.18 0.32 0 0 0 0.25 1
not male 346 0.17 0.33 0 0 0 0.2 1
black 110 0.69 0.38 0 0.43 1 1 1
not black 504 0.07 0.16 0 0 0 0 1
above-med. HS GPA 310 0.10 0.22 0 0 0 0 1
below-med. HS GPA 304 0.26 0.39 0 0 0 0.45 1

(4) Friend HS GPA all 614 3.37 0.32 2.24 3.2 3.41 3.62 4
male 268 3.29 0.33 2.25 3.07 3.34 3.53 4
not male 346 3.44 0.29 2.24 3.29 3.46 3.64 4
black 110 3.18 0.34 2.25 2.96 3.19 3.41 4
not black 504 3.42 0.30 2.24 3.25 3.45 3.63 4
above-med. HS GPA 310 3.46 0.27 2.65 3.29 3.46 3.63 4
below-med. HS GPA 304 3.29 0.35 2.24 3.08 3.35 3.55 3.92

(5) Friend ACT all 614 23.29 2.63 16 21.67 23.33 25 32
male 268 22.72 2.64 16.33 21 23 24.64 31
not male 346 23.74 2.54 16 22 23.67 25.5 32
black 110 21.2 2.53 16 19.33 21 22.5 29
not black 504 23.75 2.43 16.33 22.25 23.67 25.33 32
above-med. HS GPA 310 23.79 2.42 17.5 22.23 23.67 25.33 32
below-med. HS GPA 304 22.78 2.74 16 21 23 25 30

(6) Friend HS study all 614 11.03 7.64 0 6 9.5 14.47 70
male 268 10.53 7.37 0.5 5.17 9 14 37.33
not male 346 11.41 7.83 0 6.5 9.79 14.6 70
black 110 14.62 7.31 2.5 9.18 13.92 18.75 37
not black 504 10.24 7.49 0 5.5 8.68 13.19 70
above-med. HS GPA 310 11.48 8.44 0.5 6 9.7 14 70
below-med. HS GPA 304 10.57 6.7 0 6 9.17 14.64 37.33

(7) Friend expected study all 614 24.82 7.4 0 19.75 23.55 29.62 55
male 268 22.89 6.97 4.06 18.23 21.65 27.05 55
not male 346 26.33 7.38 0 21.02 25.06 31.38 52
black 110 28.05 8.53 12 21.35 28.9 33.79 51
not black 504 24.12 6.94 0 19.5 23 28.2 55
above-med. HS GPA 310 24.72 7.42 0 20 23.55 29.48 55
below-med. HS GPA 304 24.93 7.39 10.5 19.31 23.61 29.81 52

(8) Friend study all 614 3.5 1.72 0 2.47 3.26 4.28 11.93
male 268 3.16 1.49 0.5 2.21 3 3.88 8.46
not male 346 3.76 1.83 0 2.65 3.51 4.5 11.93
black 110 3.78 1.77 0.5 2.7 3.52 4.47 10.81
not black 504 3.44 1.7 0 2.4 3.2 4.24 11.93
above-med. HS GPA 310 3.64 1.79 0 2.56 3.36 4.41 11.93
below-med. HS GPA 304 3.36 1.64 0.5 2.36 3.17 4.13 10.81

Note: The rows in each panel show descriptive statistics for the variable of interest in the first column, for the group in the second column. GPA
is measured in GPA points (0-4). Own and friend HS study and expected study (top panel) are measured in hours/week. Friend study (bottom
panel) is measured in hours/day. The variable “Friend z” for student i in period t is the average of the variable z across i’s friends in period t.
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B Parameter Estimates

Table A4: Parameter Estimates

Parameter Estimate SE Description

Production function∗

β1 -0.073 0.4257 intercept
β2 0.245 0.0683 marginal product of own study time
ωy,HS GPA 0.445 0.0775 coefficient on HS GPA in human capital type
ωy,ACT 0.039 0.0108 coefficient on ACT in human capital type
ωy,Black -0.214 0.0978 coefficient on Black in human capital type
ωy,Male -0.056 0.0779 coefficient on Male in human capital type
ωy,HS study -0.007 0.0039 coefficient on HS study in human capital type
ωy,expected study -0.005 0.0032 coefficient on expected study in human capital type

Study cost function / Best response function∗∗

χ1 3.353 3.2751 affects common best response intercept
χ2 -0.281 4.5767 affects heterogeneity in best response intercept
χ3 1.000 – normalization
χ4 -4.288 2.3765 affects common best response slope
χ5 -0.670 0.2696 affects heterogeneity in best response slope
τµ,1 0.105 0.0358 linear term for study type
τµ,2 -0.003 0.0026 quadratic term for study type
ωs,HS GPA 1.000 – coefficient on HS GPA in study type, fixed to 1
ωs,ACT -0.054 0.0859 coefficient on ACT in study type
ωs,Black -0.646 0.8193 coefficient on Black in study type
ωs,Male -0.925 0.8490 coefficient on Male in study type
ωs,HS study 0.344 0.2080 coefficient on HS study in study type
ωs,expected study 0.007 0.0309 coefficient on expected study in study type

Shocks
σηy 0.675 0.0181 sd measurement error for human capital
σηs 2.039 0.0363 sd measurement error for observed study time
∗ Production function: yit = β1 + β2sit + µyi, where µyi = x′

iωy.
∗∗ Best response function: sit =

β2−χ1

1+χ4
+ −χ2

1+χ4
γ(µsi) +

χ4

1+χ4
s−it +

χ4·χ5

1+χ4
γ(µsi)s−it, where µsi = x′

iωs. Recall

that we allowed for τs ∈ [0, 1] in our estimation, but, finding it to be indistinguishable from 1, we fixed τs = 1
and re-estimated.

C Model Fit
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Figure A3: Fit of mean study time (left) and GPA (right), by group
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Note: “obs” are means computed using the data and “sim” are means of outcomes simulated from the model.
“High-” and “Low HS GPA” respectively refer to above- and below-median high school GPA.

Figure A4: Fit of own study time against friend study time
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Note: “obs” correspond to data and “sim” correspond to model simulations. Each point corresponds to a
pair of own and friend study time (both are measured in hours/day). The lines are fitted values from a local
quadratic regression. For each value of friend study time the fit is computed using the closest 75% of the
observations via weighted least squares, with weights proportional to (1− (distance/max. distance)3)3). See
stat smooth in the R package ggplot2 for details (Wickham, 2009; R Core Team, 2019).
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D Additional Model Material

D.1 Concavity of Best Response Function

The optimal choice of study time for the period game solves the function G(s, s−i) =
∂c
∂s

−β2 = 0. To find how s varies with friend study time, use the Implicit Function Theorem:

∂s

∂s−i

= −
∂G
∂s−i

∂G
∂s

= −
∂2c

∂s∂s−i

∂2c
∂s2

.

If friend study time decreases the cost of increasing one’s own study time, the numerator is

positive. If the cost of studying is convex in own study time, the denominator is negative,

meaning the overall sign is positive. Moreover, if friend study time enters c(·) in a weakly

concave manner, e.g., τs ≤ 1, the numerator is weakly smaller in absolute value for larger

values of s−i, i.e., study time is weakly concave in friend study time.

D.2 Proof of Existence and Uniqueness of Equilibrium

Claim 2. Let k = 24. There exists a unique pure strategy Nash equilibrium if ψi : R
N 7→ R

are weakly concave and weakly increasing, ψi(0) > 0, and ψi(k) < k for i ∈ N .

Proof. Define S = [0, k]N , i.e., a compact and convex set. Define a function Ψ:

Ψ : S 7→ S =


ψ1(x−1)

ψ2(x−2)
...

ψN(x−N)

 .

Existence: Ψ(·) is a continuous self map on the compact set S, so an equilibrium exists

by Brouwer’s Fixed Point Theorem.

Uniqueness: If Ψ(·) is strictly concave and weakly increasing we can apply Kennan

(2001). Next, consider the case where Ψ(·) is linear (i.e., weakly, but not strictly, concave),
in which case we can prove Ψ(·) is a contraction. Write the linear form of Ψ(·) as

Ψ(X) =


α11 + α21x−1

α12 + α22x−2

...

α1N + α2Nx−N

 ,

where, by assumption, maxi∈N{α2i} < 1. Let distance be calculated according to the taxicab

distance, i.e., d(X1, X2) =
∑

g∈N |X1g − X2g| for X1, X2 ∈ S. The Contraction Mapping
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Theorem holds if d(Ψ(X1),Ψ(X2)) ≤ bd(X1, X2), for b ∈ (0, 1). Calculating this for the

special case where Ψ is a linear map, we have

d(Ψ(X1),Ψ(X2)) =
∑
i∈N

α2i|X1 −X2| ≤ max
i∈N

{α2i}|X1 −X2| < d(X1, X2),

i.e., the condition for the Contraction Mapping Theorem is satisfied, where b = maxi∈N{α2i} ∈
(0, 1).

D.3 Other Mechanisms for Social Interactions

D.3.1 Cost-Reduction Specification of Cost Function

We refer to the cost function specification in (3) as the “conformity model”. Consider the

alternative effort cost function, which we refer to as the “cost-reduction model”:

c(sit, s−it, µsi) = θ1sit + θ2γ(µsi)sit +
θ3sit
sτs−it

+
θ4γ(µsi)sit

sτs−it

+
θ5s

2
it

2sτs−it

. (A1)

In this specification, the cost of studying is allowed to depend on friend study time to take

into account that studying may be less arduous when one’s friends are studying.

Solving the student’s problem results in the best response function

sit = −θ3
θ5

− θ4
θ5
γ(µsi) +

(β2 − θ1)

θ5
sτs−it −

θ2
θ5
γ(µsi)s

τs
−it. (A2)

Equation (A1) shows that the term associated with θ5 allows the student’s cost function to

be convex, a common assumption in this literature, and equation (A2) shows that one of

the preference parameters θ must be normalized. If we make a similar normalization as was

performed for the conformity model, by setting θ5 = 1,55 we obtain

sit = −θ3︸︷︷︸
β2−χ1
1+χ4

+ −θ4︸︷︷︸
−χ2
1+χ4

γ(µsi) + (β2 − θ1)︸ ︷︷ ︸
χ4

1+χ4

sτs−it + −θ2︸︷︷︸
χ4·χ5
1+χ4

γ(µsi)s
τs
−it. (A3)

That is, we can represent the parameters in equation (A1) above in terms of parameters

in (3), which are in braces beneath their counterparts in the cost-reduction model in (A3).

Both cost-function specifications result in the same reduced-form policy function identifying

four reduced-form coefficients, which map to different sets of four structural cost parameters,

depending on the cost-function specification.

55As was also the case with our normalization of χ3 = 1 in the conformity based specification, this
normalization clearly shows that we allow for the possibility of finding no evidence of endogenous social
interactions; this would occur if we estimated that both (β2 − θ1) = 0 and θ2 = 0.
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D.3.2 Production Complementarities

Suppose we did not have achievement data. For simplicity, consider the homogeneous, linear,

best response specification (i.e., χ2, χ5 = 0); the following result also obtains when using the

more general specification of the cost function. Consider the following specification of our

achievement equation:

y(sit, µyi, s−it) = β1 + β2sit + β3,compsit · s−it + µyi, (A4)

where sit is own study effort and s−it is friend study effort. If β3,comp > 0, then increases in

peer effort increase the marginal product of one’s own effort. The student’s problem would

still be separable across periods, resulting in the best response function

sit =
β2 − χ1

1 + χ4

+
β3,comp + χ4

1 + χ4

s−it. (A5)

It is obvious from (A5) that we cannot separately identify β3,comp and χ4 without having

data on the marginal product of inputs (i.e., data on achievement outcomes). Indeed, this

is the same argument that, without data on achievement, we could not identify the extent

to which students study because it is enjoyable (χ1) versus doing so because it affects their

achievement (β2). On the other hand, having both study time and achievement data would

clearly allow one to identify the extent to which production complementarities underlie social

interactions.

E Additional Estimation Results

E.1 Human Capital Spillovers (“Contextual Effects”)

Table A5 presents the relevant estimation results of our specifications allowing for contextual

effects in achievement, or human capital spillovers, described in Section 7.4. Specification (1)

presents the baseline estimates (i.e., those where friend characteristics do not directly affect

achievement), specification (2) presents results obtained when we re-estimated parameters

allowing for contextual effects generated by human capital type, as in (27), and specification

(3) presents results obtained when we re-estimated parameters allowing for achievement

contextual effects generated by a more flexible specification based on a new “contextual

human capital type”. Specifically, we define student i’s contextual human capital type

according to µy,cont,i = x′iωy,cont, where ωy,cont is a vector containing six new parameters (one

for each characteristic entering human capital and study types), and extend the technology
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(equation (2)) to be

y(sit, µyi) =β1 + β2sit + µyi + µy,cont,−i,t, (A6)

where µy,cont,−i,t ≡
∑N

j=1 At(i,j)µy,cont,j∑N
j=1 At(i,j)

, i.e., the average of period-t-friend contextual human

capital types. In this more flexible specification, a human capital spillover in the production

of student achievement would correspond to one of the parameters in ωy,cont ̸= 0.

In specification (2), we obtain a point estimate on the achievement contextual effect

parameter of β̂3,cont = 0.176, which has a standard error of 0.142. Similarly, in specification

(3), none of the estimated coefficients in ω̂y,cont, reported in the bottom six rows of the top

panel, are significantly different from zero. The coefficient on friend HS GPA (ωy,cont, HS GPA),

which would seem to be the most likely source of direct achievement spillovers, is less than

one-tenth the value of the (significant) coefficient on HS GPA in one’s own human capital

type (and not significantly different from zero). Based on likelihood-ratio tests, we would not

reject the baseline model for that in specification (2) or specification (3) at any conventional

significance level (the likelihood ratio test statistics have a p-values of 0.342 and 0.501,

respectively). This means the inclusion of either type of achievement contextual effects

would not appreciably change our results.

Our a priori belief was that our direct collection of study time data would diminish the

potential role played by contextual effects. Because we do not find evidence supporting the

direct transmission of peer characteristics in academic achievement, we have retained our

baseline specification for the exposition of our results.
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Table A5: Estimates for Contextual Effects Specifications

Baseline Contextual Effects

HC Type Flexible
Parameter Estimate SE Estimate SE Estimate SE

(1) (2) (3)
Production function∗

β1 -0.073 0.426 -0.503 0.536 -0.562 0.628
β2 0.245 0.068 0.237 0.073 0.280 0.100
β3,cont 0.176 0.142
ωy,HS GPA 0.445 0.078 0.447 0.079 0.460 0.082
ωy,ACT 0.039 0.011 0.040 0.011 0.035 0.011
ωy,Black -0.214 0.098 -0.160 0.100 -0.114 0.128
ωy,Male -0.056 0.078 -0.029 0.073 -0.060 0.090
ωy,HS study -0.007 0.004 -0.007 0.004 -0.007 0.005
ωy,expected study -0.005 0.003 -0.005 0.003 -0.006 0.003
ωy,cont, HS GPA 0.030 0.116
ωy,cont, ACT 0.009 0.014
ωy,cont, Black -0.146 0.160
ωy,cont, Male 0.087 0.113
ωy,cont, HS study -0.007 0.007
ωy,cont, expected study 0.007 0.005

Study cost function / Best response function∗∗

χ1 3.353 3.275 3.359 3.313 3.835 3.446
χ2 -0.281 4.577 -0.189 4.528 -1.105 5.072
χ3 1.000 1.000 1.000
χ4 -4.288 2.377 -4.284 2.373 -4.283 2.331
χ5 -0.670 0.270 -0.677 0.277 -0.661 0.265
τµ,1 0.105 0.036 0.120 0.040 0.094 0.034
τµ,2 -0.003 0.003 -0.004 0.003 -0.003 0.002
ωs,HS GPA 1.000 1.000 1.000
ωs,ACT -0.054 0.086 -0.064 0.079 -0.040 0.094
ωs,Black -0.646 0.819 -0.555 0.721 -0.557 0.868
ωs,Male -0.925 0.849 -0.841 0.743 -0.948 0.932
ωs,HS study 0.344 0.208 0.305 0.173 0.350 0.230
ωs,expected study 0.007 0.031 0.003 0.028 0.016 0.034

Shocks
σηy

0.675 0.018 0.673 0.018 0.674 0.019
σηs

2.039 0.036 2.039 0.036 2.037 0.036

Log likelihood -4,672.753 -4,672.302 -4,670.084
* Production function in specifications (1)-(2) is yit = β1 + β2sit + β3,contµy,−i,t + µyi, where µyi = x′

iωy and µy,−i,t ≡∑N
j=1 At(i,j)µyj∑N

j=1 At(i,j)
. Production function in specification (3) is yit = β1+β2sit+µyi+µy,cont,−i,t, where µyi = x′

iωy , µy,cont,−i,t ≡∑N
j=1 At(i,j)µy,cont,j∑N

j=1 At(i,j)
, and µy,cont,j = x′

jωy,cont.

** Best response function: sit =
β2−χ1
1+χ4

+ −χ2
1+χ4

γ(µsi) +
χ4

1+χ4
s−it +

χ4·χ5
1+χ4

γ(µsi)s−it, where µsi = x′
iωs.
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E.2 Production Complementarities

Table A6 presents the estimation results of our specification allowing for production com-

plementarities, as described in Section 7.5. Specification (1) is the baseline specification

(i.e., the specification without production complementarities) and specification (2) extends

the baseline specification to allow for production complementarities, as in (28). Unlike the

extensions including achievement contextual effects, extending the model to allow for pro-

duction complementarities results in a different best response function:

sit =
β2 − χ1

1 + χ4

+
−χ2

1 + χ4

γ(µsi) +
β3,comp + χ4

1 + χ4

s−it +
χ4 · χ5

1 + χ4

γ(µsi)s−it. (A7)

We obtain a point estimate on the production complementarity parameter of β̂3,comp =

−0.004, which has a standard error of 0.033. The estimate is quite small and statistically

insignificant, and does not provide evidence supporting production complementarities in

achievement as the source generating social interactions in our application (the likelihood

ratio test statistic has a p-value of 0.594). Rather, a conformity-based (or, equivalently,

cost-based) mechanism seems to generate the endogenous social interactions. As suggested

by inspection of (A7), the parameter most affected by this extension is χ4, the common slope

of the best response function. Notably, parameters governing best response function slopes

(χ4, χ5, and the study type parameters ωs as well as the τµ terms governing γ(·)), which
determine the level and distribution of the effects of social interactions in study time, are

essentially the same as those in the baseline specification.
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Table A6: Estimates for Production Complementarities Specification

Baseline Prod. Comp.

Parameter Estimate SE Estimate SE
(1) (2)

Production function∗

β1 -0.073 0.426 -0.030 0.548
β2 0.245 0.068 0.249 0.247
β3,comp -0.004 0.033
ωy,HS GPA 0.445 0.078 0.436 0.080
ωy,ACT 0.039 0.011 0.039 0.011
ωy,Black -0.214 0.098 -0.212 0.097
ωy,Male -0.056 0.078 -0.064 0.077
ωy,HS study -0.007 0.004 -0.006 0.005
ωy,expected study -0.005 0.003 -0.006 0.003

Study cost function / Best response function∗∗

χ1 3.353 3.275 3.219 3.252
χ2 -0.281 4.577 -0.103 4.529
χ3 1.000 1.000
χ4 -4.288 2.377 -4.289 2.430
χ5 -0.670 0.270 -0.671 0.276
τµ,1 0.105 0.036 0.107 0.036
τµ,2 -0.003 0.003 -0.003 0.003
ωs,HS GPA 1.000 1.000
ωs,ACT -0.054 0.086 -0.055 0.087
ωs,Black -0.646 0.819 -0.647 0.829
ωs,Male -0.925 0.849 -0.936 0.863
ωs,HS study 0.344 0.208 0.344 0.211
ωs,expected study 0.007 0.031 0.007 0.031

Shocks
σηy

0.675 0.018 0.674 0.018
σηs

2.039 0.036 2.038 0.036

Log likelihood -4,672.753 -4,672.611
* Production function: yit = β1 + β2sit + β3,compsit · s−it + µyi, where µyi = x′

iωy .
** Best response function: sit =

β2−χ1
1+χ4

+ −χ2
1+χ4

γ(µsi) +
β3,comp+χ4

1+χ4
s−it +

χ4·χ5
1+χ4

γ(µsi)s−it, where µsi = x′
iωs.
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E.3 Out-of-Sample Validation

Table A7 presents the baseline parameter estimates (Col. (1)) and those obtained when

estimating the baseline specification, using only first-semester data (Col. (2)). The sets

of parameters are strikingly similar between the two columns; this is confirmed by their

having very similar (first-semester-only) log likelihoods, which are presented at the bottom

of each column. This suggests that the out-of-sample fit of second-semester outcomes may

be reasonable when based on parameters estimated using only first-semester data.

Table A7: Parameters Under Baseline and Only-First-Semester Data

Baseline Only First Semester
(1) (2)

Production function∗

β1 -0.073 0.075
β2 0.245 0.221
ωy,HS GPA 0.445 0.427
ωy,ACT 0.039 0.037
ωy,Black -0.214 -0.298
ωy,Male -0.056 -0.044
ωy,HS study -0.007 -0.008
ωy,expected study -0.005 -0.004

Study cost function / Best response function∗∗

χ1 3.353 3.435
χ2 -0.281 -0.276
χ3 1.000 1.000
χ4 -4.288 -4.408
χ5 -0.670 -0.629
τµ,1 0.105 0.106
τµ,2 -0.003 -0.003
ωs,HS GPA 1.000 1.000
ωs,ACT -0.054 -0.062
ωs,Black -0.646 -0.614
ωs,Male -0.925 -1.012
ωs,HS study 0.344 0.340
ωs,expected study 0.007 -0.009

Shocks
σηy

0.675 0.672
σηs

2.039 2.081
Log likelihood -2,369.522 -2,368.304
(first-semester)

* Production function: yit = β1 + β2sit + µyi, where µyi = x′
iωy .

** Best response function: sit =
β2−χ1
1+χ4

+ −χ2
1+χ4

γ(µsi) +
χ4

1+χ4
s−it +

χ4·χ5
1+χ4

γ(µsi)s−it, where µsi = x′
iωs.

Col. (1) presents estimates from the baseline model and the log likelihood in the first semester.
Col. (2) presents results from when parameters were estimated using only first-semester data and the log likelihood in the first
semester.

To further investigate, we compare model fit for the first-semester data, which was used

to estimate model parameters, and the validation data from the second semester. We can see
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Figure A5: In and-Out-of-sample fit; study time
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that the out-of-sample fit for study time (Figure A5), GPA (Figure A6), and own-vs.-friend

study time (Figure A7) all seem quite good.

F Identification

F.1 Identification of Model with Linear Best Response Functions

Our baseline empirical specification has τs = 1, i.e., best response functions are linear in

friend study time. The identification conditions we discuss below are closely related to those

in Proposition 1 from Bramoullé et al. (2009) or Theorem 4(iii) from Blume et al. (2015).

Both papers note that the negative result of Manski (1993) is not robust to many deviations

that are commonly found in practical applications, especially those using social network data

(as we do).

We start by discussing identification of the different subsets of parameters in our baseline

model, which does not have “contextual effects” (i.e., friends’ characteristics do not enter a

students’ best response function directly). Next, in order to demonstrate that identification

in our baseline model is not dependent on an absence of contextual effects, we discuss identifi-

cation of an augmented baseline model with contextual effects, where friends’ characteristics

enters a student’s best response function.
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Figure A6: In- and-Out-of-sample fit; GPA
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Figure A7: In- and-Out-of-sample fit; own vs. friend study time
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F.1.1 Identification of Baseline Model (No Contextual Effects)

Consider identification of our baseline model’s parameters when τs = 1. We have three

subsets of parameters in our estimating equations. The first subset collects those in our

achievement equation:

yit = β1 + β2s
∗
it + x′iωy + ηyit, (A8)

where s∗it is our estimate of model study time, which depends on all students’ characteristics,

the network in semester t, and parameters that are identified in the reduced-form study

time regressions below. The vector (β1, β2, ωy) is identified given linear independence of a

constant and stacked versions of s∗it, and xi, a standard condition (which also holds in our

data).

The remaining parameters are estimated using the specification for equilibrium study

time. Imposing that τs = 1, the best response function in our baseline model, equation (7),

is

sit =
β2 − χ1

1 + χ4

+
−χ2

1 + χ4

γ(µsi) +
χ4

1 + χ4

s−it +
χ4 · χ5

1 + χ4

γ(µsi)s−it. (A9)

There are two sets of parameters in the best response function above, the composite pa-

rameters π0 ≡ β2−χ1

1+χ4
, π1 ≡ −χ2

1+χ4
, π2 ≡ χ4

1+χ4
, π3 ≡ χ4·χ5

1+χ4
, and those implicit in γ(µsi). We

first treat γ(µsi) as though it were observable data, to understand identification of the com-

posite π parameters, and then discuss identification of the parameterization of γ(µsi). Our

model parameters (χ1, χ2, χ4, χ5) are trivially identified from π using β2 (identified in our

achievement regression above) and the assumption that χ3 = 1.

Student i’s best response function is

sit = π0 + π1γ(µsi) + (π2 + π3γ(µsi)) s−it.

This results in the stacked best response function

St = π01N + π1γ + (π2 + π3diag(γ))WtSt,

where St is the vector of study times for all N students, 1N is an N−vector of ones, γ is an

N -vector stacking the γ(µsi), diag(γ) is a diagonal matrix with its (i, i) entry equal to γ(µsi),

and Wt is the row-normalized adjacency matrix At (i.e., if At(i, j) = 0 then Wt(i, j) = 0 and

if At(i, j) = 1 then Wt(i, j) = 1/[
∑N

j=1A(i, j)]).

Consider the following reduced-form estimating equation, which, to ease exposition, uses
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only one study time report per student in each semester t:

S̃t = [I − (π2 + π3diag(γ))Wt]
−1 [π01N + π1γ] + ηt, (A10)

where S̃t is the vector of observed study reports.56 We follow Bramoullé et al. (2009) and

address identification by examining whether there are multiple parameter sets that would

generate the same reduced form.

An argument very similar to that in Proposition 1 of Bramoullé et al. (2009) can be

applied for our baseline model, which allows for heterogeneous reactiveness.

Claim 3 (Identification with τs = 1). If {I,Wt, diag(γ)Wt} are linearly independent and

either π0 ̸= 0 or π1 ̸= 0, then (π0, π1, π2, π3) are identified.

Proof. If two sets of parameters (π0, π1, π2, π3) and (π′
0, π

′
1, π

′
2, π

′
3) have the same reduced

form, then the following must hold:

[I − (π2 + π3diag(γ))Wt]
−1π0 = [I − (π′

2 + π′
3diag(γ))Wt]

−1π′
0 (A11)

[I − (π2 + π3diag(γ))Wt]
−1π1 = [I − (π′

2 + π′
3diag(γ))Wt]

−1π′
1. (A12)

First, suppose π1 ̸= 0. After some manipulation, (A12) can be re-written as

(π1 − π′
1)I + (π′

1π2 − π1π
′
2)Wt + (π′

1π3 − π1π
′
3) diag(γ)Wt = 0.

If {I,Wt, diag(γ)Wt} are linearly independent, this equation implies

π1 = π′
1 (A13)

π′
1π2 = π1π

′
2 (A14)

π′
1π3 = π1π

′
3. (A15)

Since π1 ̸= 0, equations (A13), (A14), and (A15) imply (π1, π2, π3) = (π′
1, π

′
2, π

′
3) and plugging

these values into equation (A11) implies π0 = π′
0. If π0 ̸= 0, the same algebra applied to

(A11) demonstrates identification.

Linear independence of {I,Wt, diag(γ)Wt} will occur with probability approaching one

for a large sample, as long as the distribution of heterogeneity γ(µsi) is non-degenerate and

weakly dependent across individuals. Intuitively, students need friends, and enough students

need differing relevant characteristics.

56Our actual estimating equation, with multiple reports per student i, predicts each report with student
i’s row of [I − (π2 + π3diag(γ))Wt]

−1
[π01N + π1γ], where each report has its own idiosyncratic η error.
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To complete the parameterization of our model, we specify γ(µsi) as a scale-normalized,

nonlinear function of student characteristics, xi. We were initially motivated to use a non-

linear functional form for γ(µsi) to help ensure stability of our general solution algorithm

(in which τs is a free parameter). Because γ(µsi) is specified to be nonlinear, we do not

have a global identification proof for its parameters, as is standard. However, in prac-

tice, we obtained stable estimates for the γ(µsi) parameters across a wide variety of start-

ing values, so we are confident that these parameters are identified. We note that if our

functional form for γ(µsi) were linear in characteristics {xi1, xi2, . . . , xiK}, then identifica-

tion conditions would be straightforward extensions of those above, which treat γ(µsi) as

known. Specifically, identification of (π0, π1, π2, π3) and the additional coefficients in the lin-

ear γ(µsi) would follow from π0 ̸= 0 or π1 ̸= 0 and linear independence of a set of matrices:

{I,Wt, diag(X1)Wt, diag(X2)Wt, . . . , diag(XK)Wt}, where Xk is the N -vector stacking xik

for all students.

The rank conditions in Claim 3 are satisfied in our data on student characteristics and

Wt for each semester, at our estimates of γ(µi). The implied estimates of study times satisfy

the rank condition for identification of the parameters in equation (A8).

F.1.2 Identification of Baseline Model, Augmented with Contex-
tual Effects

Identification for our model parameters is not dependent upon a lack of contextual effects

in best responses. Consider a modification of our baseline model that allows best responses

to also depend on the average of friends’ effective study types γ(µsj). Again for ease of

exposition, first treat γ(µsi) as observed to the researcher.

Student i’s best response function can be written as

sit = π0 + π1γ(µsi) + (π2 + π3γ(µsi)) s−it + π4

∑N
j=1A(i, j)γ(µsj)∑N

j=1A(i, j)
,

where the new composite parameter π4 embodies contextual effects in the study time equa-

tion. The composite π parameters map to our underlying structural parameters in the same

way as above, in our baseline model.

Using the same notation as in the baseline model,57 the stacked best response function is

St = π01N + π1γ + (π2 + π3diag(γ))WtSt + π4Wtγ.

Reduced-form estimating equations with equilibrium study times in this augmented model

57We continue to use one study time observation per student in each semester t.
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would then be

S̃t = [I − (π2 + π3diag(γ))Wt]
−1 [π01N + π1γ + π4Wtγ] + ηt, (A16)

where S̃t is the vector of observed study reports with idiosyncratic error term ηt.

Claim 4 (Identification with τs = 1 and with contextual effects). If π1π2 + π4 ̸= 0 and

{I,Wt,W
2
t , diag(γ)Wt, diag(γ)W

2
t } are linearly independent, then (π0, π1, π2, π3, π4) are iden-

tified.

Proof. From equation (A16) above, if two sets of parameters (π0, π1, π2, π3, π4) and (π′
0, π

′
1, π

′
2, π

′
3, π

′
4)

have the same reduced form, then the following must hold:

[I − (π2 + π3 · diag(γ))Wt]
−1π0 = [I − (π′

2 + π′
3 · diag(γ))Wt]

−1π′
0 (A17)

[I − (π2 + π3 · diag(γ))Wt]
−1[π1 + π4Wt] = [I − (π′

2 + π′
3 · diag(γ))Wt]

−1[π′
1 + π′

4Wt].

(A18)

After some manipulation, (A18) can be re-written as

(π1 − π′
1)I + (π′

1π2 − π1π
′
2 + π4 − π′

4)Wt + (π′
1π3 − π1π

′
3) diag(γ)Wt+

(π′
4π2 − π4π

′
2)W

2
t + (π′

4π3 − π4π
′
3) diag(γ)W

2
t = 0.

If {I,Wt,W
2
t , diag(γ)Wt, diag(γ)W

2
t } are linearly independent, this equation implies

π1 = π′
1 (A19)

π′
1π2 + π4 = π1π

′
2 + π′

4 (A20)

π′
1π3 = π1π

′
3 (A21)

π′
4π2 = π4π

′
2 (A22)

π′
4π3 = π4π

′
3. (A23)

In addition, both parameterizations must satisfy our parameter restriction, which we

call Assumption A: π1π2 + π4 ̸= 0 and π′
1π

′
2 + π′

4 ̸= 0. This assumption essentially means

that either endogenous or exogenous social interactions are present, and also rules out the

knife-edge case where they cancel each other out.

We will show that (π1, π2, π3, π4) = (π′
1, π

′
2, π

′
3, π

′
4), which, when combined with equation

(A17), implies π0 = π′
0 and, thus, (π0, π1, π2, π3, π4) = (π′

0, π
′
1, π

′
2, π

′
3, π

′
4).

First, suppose that π1 = 0. Then equation (A20) implies π4 = π′
4, where π4 ̸= 0

because π1π2 + π4 ̸= 0 (by Assumption A). Substituting π4 = π′
4 into equations (A22) and

(A23) and dividing by π′
4, we respectively have π2 = π′

2, and π3 = π′
3. Therefore, we have
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(π1, π2, π3, π4) = (π′
1, π

′
2, π

′
3, π

′
4).

Now suppose that π1 ̸= 0 and consider the subset where π3 ̸= 0 also holds. From equation

(A19) π1 = π′
1, so equation (A21) implies π3 = π′

3 ̸= 0. With π3 = π′
3 ̸= 0, equation (A23)

implies π4 = π′
4. With π4 = π′

4 and π1 = π′
1 ̸= 0, equation (A20) implies π2 = π′

2, therefore

(π1, π2, π3, π4) = (π′
1, π

′
2, π

′
3, π

′
4).

Now consider the remaining cases, where π1 ̸= 0 and π3 = 0, and split these into two

sets. For cases where equation (A22) is not zero on both sides, i.e., π′
4π2 = π4π

′
2 ̸= 0, we can

define λ ≡ π′
2/π2 ̸= 0, such that we have π′

2 = λπ2 and π
′
4 = λπ4. Substituting for π′

2 and π
′
4

in equation (A20), we have π′
1π2 + π4 = λ(π1π2 + π4). Substituting π1 = π′

1 (from equation

(A19)), the expression from the previous sentence becomes π1π2+π4 = λ(π1π2+π4). Because

by Assumption A we have π1π2+π4 ̸= 0, we can divide the expression through by π1π2+π4,

yielding λ = 1. Thus, both π′
2 = π2 and π′

4 = π4, giving (π1, π2, π3, π4) = (π′
1, π

′
2, π

′
3, π

′
4).

The final cases are where π1 ̸= 0, π3 = 0 and π′
4π2 = π4π

′
2 = 0. At least one parameter

in each of π′
4π2 and π4π

′
2 is zero, meaning there are nine possible cases, corresponding to

different arrangements of zeros across these two pairs of parameters. The cases with any

three of the four parameters being zero and that with all four being zero are ruled out by

Assumption A. Assumption A also rules out π2 = π4 = 0 and π′
2 = π′

4 = 0. The remaining

case with π2 = π′
2 = 0 implies via equation (A20) that π4 = π′

4. Finally, the remaining

case with π4 = π′
4 = 0, when combined with equation (A20), implies π2 = π′

2 because

π1 = π′
1 ̸= 0. Thus, under these last two cases either π2 = π′

2 = 0 or π4 = π′
4 = 0, and we

have (π1, π2, π3, π4) = (π′
1, π

′
2, π

′
3, π

′
4).

In our application, the matrices {I,Wt,W
2
t } are linearly independent and the whole set

{I,Wt,W
2
t , diag(γ)Wt, diag(γ)W

2
t } will be linearly independent with probability approach-

ing one in large samples, if the distribution of γ(µsi) is non-degenerate and weakly dependent

across students. The issues with identifying γ(µsi) in this model are identical to those in our

baseline model.

F.2 Identification of Model with Nonlinear Best Response Func-
tions

While we did not find evidence that τs < 1, it seems worthwhile for completeness to briefly

discuss this nonlinear case. There is no generally applicable (global) identification result for

nonlinear social interactions models. Brock and Durlauf (2001) discuss why identification of

nonlinear social interactions models is generic and how nonidentification is a special case.

They develop a theorem (Theorem 7, on page 3328) showing (local) identification for the

“nonlinear-in-means” social interactions model, which like the typical linear-in-means model

features non-overlapping peer groups, but unlike the typical linear-in-means model has en-
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dogenous agent’s actions that are linear in a nonlinear function of peer actions. Therefore,

while we do not formally prove identification of contextual effects for the nonlinear model,

we are confident that the model parameters would be identified in this case as well.

G Variation in Achievement Response, by Centrality
of Shocked Student

To get a sense of why shocking different students can produce such different gains, the left

panel of Figure A8 shows the relationship between the centrality of the shocked student

and the total response at the new equilibrium.58 As before, this calculation excludes the

mechanical gain in achievement experienced by the shocked student. Each dot records the

total achievement response (y-axis) by the percentile centrality that semester, i.e., by how

central the shocked student is (x-axis). The size of each (blue) dot shows the degree (i.e.,

number of friends) of the shocked student. Larger dots are concentrated at the top-right,

and smaller ones at the bottom-left. That is, students with more friends tend to have higher

centrality indices and larger achievement gains. Intuitively, because the effects of effort

changes are stronger the closer students are, the total response is higher when the shocked

student is more centrally located.59 The right panel of Figure A8 plots partial equilibrium

effects (red dots). We can see here that, though shocked students have the same degree (dot

sizes), the average response is not as strongly increasing in centrality of the shocked student.

This is the case because the equilibrium effects play a larger role the more densely connected

the shocked student is to the rest of the network.

H Additional Tables

58We use what is called a “closeness” centrality measure, given by the reciprocal of the sum of short-
est distances between that student and every other student in the graph. Average distance to others for
unconnected students is set to the number of students (Csardi and Nepusz (2006), Freeman (1979)).

59The notion that certain students may disproportionately affect other students is related to the concept
of a “key player”, studied in Ballester et al. (2006).
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Figure A8: Total achievement response (GPA points), by centrality of shocked student
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Note: The vertical location of each dot represents the total achievement response to shocking a different
student; the left panel presents the total gain at the new equilibrium and the right panel presents the partial
equilibrium total gain. The x-axis indicates the shocked student’s centrality to other students and dot size
denotes the degree of the shocked student.
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Table A8: Study time regressions controlling for different sets of characteristics, pooled over
both semesters

Dependent variable: Own study

(1) (2) (3) (4)

Male −0.369∗∗∗ −0.328∗∗ −0.391∗∗∗

(0.136) (0.140) (0.135)

Black 0.116 0.333∗ 0.324∗

(0.186) (0.192) (0.172)

HS GPA 0.413∗∗∗ 0.392∗∗

(0.149) (0.156)

ACT −0.032 −0.029
(0.021) (0.022)

HS study 0.043∗∗∗

(0.006)

Expected study −0.002
(0.006)

Friends study 0.166∗∗∗ 0.198∗∗∗ 0.202∗∗∗ 0.228∗∗∗

(0.037) (0.039) (0.039) (0.038)

Constant 1.915∗∗∗ 2.167∗∗∗ 2.850∗∗∗ 2.648∗∗∗

(0.671) (0.679) (0.172) (0.152)

Observations 574 574 574 574
R2 0.169 0.087 0.076 0.058

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01 GPA is measured in GPA points (0-4). HS study
and expected study are measured in hours/week. Own and friend study are measured
in hours/day. The variable “Friend z” for student i in period t is the average of the
variable z across i’s friends in period t.

H.1 Effects on 10-Year Graduation

Table A10 shows the results of a probit of graduating within ten years of starting college on

first year achievement. Column (1) shows the results of a probit of graduating on the esti-

mated human capital type µ̂y and average model achievement during the first two semesters
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Table A9: Study time regressions, pooled over both semesters

Dependent variable: Own study

(1) (2)

Male −0.369∗∗∗ −0.365∗∗∗

(0.136) (0.137)

Black 0.116 0.115
(0.186) (0.187)

HS GPA 0.413∗∗∗ 0.389∗∗∗

(0.149) (0.150)

ACT −0.032 −0.034
(0.021) (0.021)

HS study 0.043∗∗∗ 0.041∗∗∗

(0.006) (0.006)

Expected study −0.002 −0.002
(0.006) (0.006)

Own share science courses 0.349
(0.390)

Friend study 0.166∗∗∗ 0.157∗∗∗

(0.037) (0.038)

Avg. friend share science courses 0.880
(0.562)

Constant 1.915∗∗∗ 1.873∗∗∗

(0.671) (0.684)

Observations 574 574
R2 0.169 0.176

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01 GPA is measured in GPA points (0-4).
Own and friend HS study and expected study are measured in hours/week.
Own and friend study are measured in hours/day. The variable “Friend z”
for student i in period t is the average of the variable z across i’s friends in
period t.
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of college.60 Column (2) runs a similar probit, substituting student characteristics in for esti-

mated human capital type. Both statistical models show a strong link between performance

during the first year and whether or not a student graduates from college within ten years

of starting. The results are calculated using the covariates in the first column; the results

are very similar when we to use those in the second column instead. For each of our simu-

lated pairs of networks, we compare the predicted probability of graduation for each student

under the baseline network to the predicted probability of graduation after achievement has

changed under the simulated counterfactual network.

60Note that this specification is consistent with the separable manner in which human capital type and
own study time enter the human capital production function.
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Table A10: Probit of graduating on average of first year achievement and student charac-
teristics

Dependent variable: Graduate within 10 years

(1) (2)

µ̂y −0.044
(0.495)

Black 0.441
(0.281)

Male −0.282
(0.210)

HS GPA 0.279
(0.403)

ACT −0.045
(0.039)

HS study −0.013
(0.008)

Expected study 0.003
(0.009)

Avg. achievement♡ 1.361∗∗∗ 1.447∗

(0.485) (0.739)

Constant −3.118∗∗∗ −3.215∗∗∗

(0.652) (0.981)

Observations 307 307
Log Likelihood −154.079 −146.092
Akaike Inf. Crit. 314.158 308.184

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
♡: Average of model achievement across both semesters
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