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Abstract

Regression-discontinuity (RD) designs estimate treatment effects only around a

cutoff. This paper shows what can be learned about average treatment effects for the

treated (ATT), untreated (ATUT), and population (ATE) if the cutoff was chosen to

maximize the net gain from treatment. Without capacity constraints, the RD estimate

bounds the ATT from below and the ATUT from above, implying bounds for the ATE,

and optimality of the cutoff rules out constant treatment effects. Bounds are typically

looser if the capacity constraint binds. Testable implications of cutoff optimality are

derived. The results are demonstrated using previous RD studies.
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1 Introduction

Regression-discontinuity (RD) designs are a popular tool for program evaluation due to

the ubiquity of cutoff-based treatment assignment and agnosticism they afford researchers.

However, it is not always clear how best to use such estimates to inform policy. Suppose

an impact evaluation of a program using an RD design found the average treatment effect

at the cutoff to be positive, but small. Is this evidence the program should be terminated?

Because treatment effects likely vary, it is useful to extend findings from RD designs to units

away from the cutoff.

The goal of this paper is to demonstrate how combining an RD estimate with a simple

economic model can deliver useful information about treatment effects in certain contexts.

Researchers using RD designs typically focus on treatment effects at the cutoff, an approach

that has the ostensible benefit of imposing minimal structure. Though such estimates can

help decide whether to extend the treatment at the margin, the price to pay is that without

more structure, the addition of which may be appropriate in some contexts, they are com-

pletely uninformative about treatment effects elsewhere. This paper considers a program

administrator interested in maximizing the gain from treatment, net of treatment costs, but

who, as is often the case in real-world applications, has been constrained to assign treatment

using a cutoff rule. By imposing structure not on treatment effects, but on the economic

environment, I show that we can learn about important treatment effect parameters in cases

where there is reason to believe the administrator has information about the costs and ben-

efits of treatment. That is, the choice of cutoff may reveal information key to understanding

the overall costs and benefits of a program.1

Combining an estimate of the average treatment effect at the cutoff with a simple model

of cutoff choice yields many insights. The most basic inference is that the average effect of

treatment on the treated (ATT) must be positive if the marginal cost of treatment is positive.

There is also a basic testable implication of the model: we can reject cutoff optimality if the

average treatment effect at the cutoff is negative. If the marginal cost is nonincreasing and

the cutoff does not reflect a binding capacity constraint, optimality implies that the average

treatment effect is nondecreasing at the cutoff (when approaching the cutoff from the un-

treated side) and several additional results relate the average treatment effect at the cutoff

to treatment effects elsewhere. First, the RD estimate at the treatment cutoff provides a

lower bound for the ATT; if this were not true, the administrator could have obtained higher

utility by moving the cutoff. Intuitively, the administrator will not place the cutoff where

1See Heckman et al. (1997) for a discussion of heterogeneous treatment effects in the context of an
experimental setting. See Heckman and Smith (1998) for a discussion of how to link information about
program benefits with conventional cost-benefit analysis and welfare calculations.
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the gain from treatment is very large if, as is commonly assumed by practitioners, average

treatment effects are smooth. Second, the fact that the administrator chose not to extend

treatment to certain students provides an upper bound for the average effect of treatment on

the untreated (ATUT). These bounds only require the RD estimate and qualitative informa-

tion about treatment costs, obviating estimating the cost of treatment. Additionally, we can

rule out constant treatment effects, a finding that relates to the literature comparing findings

from RD studies with those from experiments (e.g., Black et al. (2007) and Buddelmeyer and

Skoufias (2004)). Finally, the bounds on the ATT and ATUT provide informative bounds

on the population average treatment effect (ATE). Bounds on the ATE are looser if the

marginal cost of treatment is strictly increasing; they are also typically looser (and never

tighter) if the chosen cutoff reflects a binding capacity constraint. However, a new testable

implication also emerges in the latter case: If the program is subsequently expanded until

the constraint no longer binds, the RD estimate should be lower than it had been when the

constraint was binding.

These results have implications for the use of RD estimates in policymaking. Perhaps

the most striking result is that, because an unconstrained administrator is unlikely to choose

a cutoff where the gain is quite large, one may incorrectly surmise from RD estimates that

certain programs are ineffective and eliminate them, even though in reality they are quite

effective for the treated population. In fact, such a mistake would be more likely for a pro-

gram with a very low marginal cost, ceteris paribus, because an unconstrained optimizing

administrator would extend treatment to units until the gain, i.e., marginal benefit, equaled

this low marginal cost. If the cutoff reflects a binding capacity constraint, then the RD esti-

mate will exceed the marginal cost of treatment, which may help explain why it is sometimes

difficult to “scale up” successful interventions to larger populations (see, e.g., Elmore (1996)

and Sternberg et al. (2006)).

The results are illustrated using two recent empirical applications. The studies used in

the applications, Hoekstra (2009) and Lindo et al. (2010), exploit discontinuities in treatment

assignment rules to study questions in the economics of education, and cover cases where

the capacity constraint likely does and does not bind.2 I first show that bounds obtained for

the sharp RD design can be extended to the “fuzzy” design used in one of the applications.

I also formally test the necessary conditions of optimality for both applications and find

that I cannot reject the assumption that cutoffs were chosen optimally by informed program

2Applications need not be restricted to education. For example, the findings from this paper might
apply to a job training program in which the program officer receives a bonus based on the increase in
wages. I reiterate that one could test whether the environment studied in this paper was applicable for this,
or any other context by checking that the average treatment effect is nonnegative and nondecreasing (when
approaching from the untreated side) at the cutoff.
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administrators.

There is a long tradition in economics, starting with Roy (1951), of using revealed prefer-

ences to inform empirical work about information unobservable to the econometrician. This

paper simply shows what we could learn by embedding the choice of treatment cutoff within

a larger decision problem. To most clearly demonstrate what can be learned by taking into

account the administrator’s context, I assume she knows both average treatment effects and

her cost function. These informational assumptions simplify this paper’s analysis at the cost

of being stronger than those invoked in the Roy model, where individuals are only assumed

to know their potential outcomes. Therefore, in addition to testing necessary conditions of

optimality, I also examine how the results are affected by violations of these assumptions.

By embedding an RD design within a simple economic model, this paper contributes

to several literatures. First, it adds to the literature examining technical features of RD

designs (Hahn et al. (2001), Van der Klaauw (2008)) by demonstrating how inferences from

RD designs can be generalized by using a simple theoretical framework. This paper also

relates to the debate about the usefulness of discontinuity and other estimators of treatment

effects (Heckman et al. (1999), Heckman and Urzua (2010), Imbens (2010)). In adopting a

bounding approach, this paper has a similarity to Manski (1989), Manski (1990), Manski

(1997), and Manski and Pepper (2000), which examine how boundedness and monotonicity

assumptions can provide useful information about treatment effect parameters. This paper

takes a different approach by assuming optimality of assignment to treatment status, while

making minimal assumptions about the responses of agents to the treatment. Though it

uses stronger informational assumptions, some of the basic insights of this paper are similar

to those in Heckman and Vytlacil (2007), who build on the work of Björklund and Moffitt

(1987) by using the optimality of individual decision-making in the context of a Roy model

and the marginal treatment effect (MTE) to bound treatment effects for non-marginal units.

This paper also contributes to a literature seeking to extend results from RD designs.

Angrist and Rokkanen (2015) share a similar motivation and goal to this paper, invoking a

conditional independence assumption to generalize findings from RD studies. Specifically,

their approach exploits additional covariates which, when conditioned upon, eliminate the

relationship between the running variable and outcome. This is testable for units near the

cutoff, suggesting a way to confirm that extrapolation away from the cutoff would be rea-

sonable. Due to the different type of assumption made (i.e., statistical versus economic),

this paper complements their work. Dong and Lewbel (2015) show that the differentiabil-

ity assumptions typically invoked to estimate RD models can be exploited to estimate the

derivative of the average treatment effect. In a similar vein, DiNardo and Lee (2011) show

how a Taylor expansion around the cutoff can be used to estimate the ATT.
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Section 2 lays out the model of the administrator’s problem, which is used to obtain

theoretical results in Section 3. Section 4 illustrates the results using empirical applications.

Section 5 discusses policy implications as well as variations on the informational assumptions

made in this paper.

2 Model

Consider a program administrator who can assign students to a training program. The ad-

ministrator knows how effective the program would be on average for students, given their

characteristics, and also knows the cost of enrolling students in the program. Due to institu-

tional reasons, she is constrained to choose a cutoff rule for assigning the treatment, above

which students are enrolled.3 The choice of cutoff-based treatment assignment captures the

fact that many real-world policies are discrete in nature (Ferrall and Shearer (1999)).

There is a measure one of students, indexed by i. Student i has running variable wi,

which has continuous CDF Fw; for example, the running variable could be student SAT

scores. Let the random variable Yτi denote student i’s potential outcome under treatment

status τ , where τ = 1 denotes the treatment and τ = 0 the control. For example, this may

be the wage earned as a function of being enrolled in the training program. The treatment

effect for student i is ∆i ≡ Y1i − Y0i and the average treatment effect for students with

running variable w is E [Y1i − Y0i|wi = w]. Note that there may be heterogeneous treatment

effects among students with running variable w. It will be convenient to define the average

treatment effect among students at an index denoting the xth quantile of w using the function

∆(x) ≡ E [Y1i − Y0i|wi = F−1
w (x)]. Note that x is uniformly distributed over [0, 1] (Embrechts

and Hofert, 2013, Proposition 3.1). As is common in studies employing discontinuity designs,

the stable-unit-treatment-value-assumption (SUTVA) is maintained here (Rubin (1980)),

ruling out general equilibrium effects and other interactions between other units’ treatment

status and one’s own treatment effect, such as endogenous social interactions.

The administrator is constrained to choose a cutoff rule where τ(x) = 1 if and only if

x ≥ κ for some κ ∈ (0, 1).4 To simplify exposition, I assume a “sharp” RD design, which

3Allowing the administrator to choose which side of the cutoff to treat does not affect most results.
In particular, this would not change bounds on the mean effect of treatment on the treated, untreated, or
population. In the following, I indicate where this assumption would affect a result.

4 Note the implicit assumption that the administrator chooses whether to treat students above (or below)
the cutoff. As will be clear after the next section, if the administrator could choose precisely which x ∈ [0, 1]
to treat we can make the inference that the expected gain from serving each quantile of students was at least
as large as the marginal cost of serving them, point-wise. This assumption would imply that expected gains
were positive for all treated students, as opposed to positive on average. Therefore, we could also bound

from below the share of students who would expect to gain from treatment:
∫ 1

0
1{∆(x) > 0}dx ≥ µ. This
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means that students with indices of κ or greater receive the treatment (i.e., participate in

the program) and students with indices less than κ don’t receive the treatment (i.e., don’t

participate in the program).5 Let κ∗ denote the treatment cutoff chosen by the administrator.

The measure of students receiving treatment is µ∗ =
∫ 1

0
τ(x)dx = 1 − κ∗; if there is a non-

unit measure of students then let µ denote the share of students treated. The administrator

faces a cost of treating µ students, c(µ), which may capture an implicit budget constraint.

Note that c(µ) could capture either primitive nonlinearity in the cost function or even some

forms of cost heterogeneity with respect to x (see Appendix E). If c(µ) cannot capture such

heterogeneity, then treatment effects could be interpreted as being net of such heterogeneous

costs. Results from the administrator’s unconstrained problem, the model developed in this

section, are presented in Section 3.1. Section 3.2 introduces capacity constraints and then

analyzes that problem.

The fundamental problem of causal inference is that we only observe each student in one

treatment condition, making it difficult to recover the entire function ∆(·). What can we say

about ∆(·) knowing that κ∗, the treatment cutoff, was chosen by the administrator and the

value of ∆(κ∗), from a RD design? Though I find that we can not say much about ∆(·) for

specific values of x that are not at the cutoff, we will be able to bound averages of ∆(·) over

different intervals; in particular, I focus on the average effect of treatment on the treated

(ATT), untreated (ATUT), and population (ATE):

ATT =
∫ 1

κ∗
∆(x)
1−κ∗dx

ATUT =
∫ κ∗

0
∆(x)
κ∗
dx

ATE =
∫ 1

0
∆(x)dx,

(1)

where superscripts are used to denote the lower and upper bounds of parameters, e.g., ATELB

and ATEUB respectively denote the lower and upper bounds on the population average

treatment effect. The “local average treatment effect” (LATE) at the treatment cutoff is

simply ∆(κ∗).

I briefly remark on notation before defining the administrator’s problem. In a perhaps

nonstandard manner, I define and study the average treatment effect at quantiles of the

running variable w instead of at values of w. This is because the cost function is defined

in terms of the measure (or share) of treated students µ ∈ [0, 1]. Since treatment status

depends only on which side of the cutoff a student lies, the ATT and ATUT (and population

ATE) are unaffected by this choice.

would be relevant if, say, the population voted on whether to implement the treatment.
5Section 4 shows that the theoretical results are identical under a “fuzzy” design where, instead of

perfect compliance, the probability of participation is constant other than for a discontinuous change at the
treatment cutoff. Appendix A examines the case where probabilities are not constant on either side of the
cutoff.
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The administrator’s problem is to choose a cutoff to maximize the total treatment effect

from treating the treated, net treatment cost, which is equivalent to maximizing the total

average treatment effect from treating the treated, net treatment cost:6

max
κ̃

β

 1∫
κ̃

∆(x)dx

− c (1− κ̃) , (2)

where β measures how much the administrator values the effect of the program in terms of

the cost of treatment. Though in principle identified when the cost function is known to the

researcher, β is normalized to one to simplify exposition. The administrator has an outside

option of zero. This objective function is similar to those studied in Manski (2003, 2004,

2011), where a utilitarian social planner takes an action to maximize expected welfare (i.e.,

the gain net the cost of treatment), as well as those in studies of statistical discrimination

such as Knowles et al. (2001), Anwar and Fang (2006), and Brock et al. (2011), where police

officers face a cost of pulling over motorists to maximize expected hit rates. The economic

rationale for studying a utilitarian social planner is that a system of lump-sum transfers

could then be designed to redistribute total output in such a manner as the social planner

saw fit; that is, the utilitarian objective corresponds to the efficient allocation.7

Assumption 1. The following assumptions about costs and benefits of treatment are main-

tained until superseded:

(i) The cost of treatment is known by the administrator, and is strictly increasing and

linear in the number of units treated, i.e., c(µ) = χµ, where χ = c′(·) > 0 denotes the

constant marginal cost of treatment.

(ii) The average treatment effect ∆(·) is differentiable in x and known by the administrator.

(iii) There exist finite lower and upper bounds on ∆(·); denote these by ∆ ∈ R and ∆ ∈ R,

respectively.

Assumption 1(i) implies that the marginal cost of providing treatment is known and

strictly positive; the assumption of a linear cost function is made to simplify exposition.

The assumption that the cost function is linear is also made in Manski (2011)’s analysis of

optimal treatment choices, which assumes costs are separable across treated units. All the

following results would obtain in the more general case where the marginal cost of treatment

6For an example of a slightly different objective function, see Heinrich et al. (2002), who study treatment
decisions when administrators face performance standards.

7In the baseline case presented here, the administrator is a utilitarian who weighs gains for all students
equally. Appendix D considers a case where gains are not weighed equally; the results derived in Section 3.1
are also obtained there.
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was nonincreasing in µ, i.e., where the cost of treatment is weakly concave in µ.8 The first

part of Assumption 1(ii), i.e., differentiability of ∆(·), is typically invoked in applications of

RD designs, which control for a smooth (typically polynomial or smoothed non-parametric)

function of the running variable.9 The second part of Assumption 1(ii), that ∆(·) is known

by the administrator, produces a testable implication (as is shown in the next section). The

administrator need not be perfectly informed about average treatment effects for students

with index x; so long as the administrator has an unbiased signal of ∆(x), uncertainty about

average treatment effects does not affect the analysis, as the administrator’s objective is

linear. When the bias can depend on x, however, bounds vary depending on the relationship

between the bias and x. If the bias is positive for treated students and negative for untreated

students then bounds are looser (i.e., wider); if instead the bias is negative for treated

students and positive for untreated students then bounds are tighter.10 Assumption 1(iii) is

an implication of potential outcomes Yτi having common and finite support for all i, which

makes sense for outcomes such as wages, test scores, or probabilities.11 Unless superseded by

another assumption, assumptions are maintained after introduced. For example, Assumption

1 is maintained until Assumption 1(i) is superseded by Assumption 1′(i) in Appendix E,

which studies variable marginal costs of treatment.

In what follows, all bounds presented in this paper are “sharp”, i.e., they are the tightest

possible bounds given the model and data. This is because they are characterized by nec-

essary and sufficient conditions. I refer to a bound as “uninformative” when it cannot be

tightened relative to the bound on the parameter space, specified in Assumption 1(iii). For

a parameter in eq. (1), an informative lower bound is a lower bound above ∆, an informative

upper bound is an upper bound below ∆, and uninformative bounds are [∆,∆].

3 Results

Section 3.1 develops results for the administrator’s problem when there is no capacity con-

straint. Section 3.2 develops results for the administrator’s problem in the presence of a

capacity constraint.

8Note that ∂c
∂µ > 0 ⇒ ∂c

∂κ̃ < 0, as ∂µ
∂κ̃ < 0. If one thought marginal costs were increasing in a context of

interest, the bounds would have to be adjusted accordingly (see Appendix E for details).
9Note that ∆(·) only needs to be smooth local to the chosen cutoff. The assumption that it is globally

smooth is only made to simplify exposition.
10 The results for how uncertainty and bias affect bounds are derived in Appendix B.
11Note that Yτi may contain negative values, which may capture a negative treatment effect or a positive

opportunity cost of participating in an ineffective treatment.
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3.1 Results without Capacity Constraints

I first derive necessary and sufficient conditions to characterize κ∗, in terms of ∆(·) and the

cost function c(µ) = χµ. Note that, throughout this paper, I study interior (of the unit

interval) κ∗, which is not restrictive when analyzing results from an RD design.

Condition 1 (Necessity). The following necessary conditions must hold for κ∗:

(i) Marginal Benefit= Marginal Cost: ∆(κ∗) = c′(1− κ∗) = χ

(ii) Increasing Marginal Benefit: ∆′(κ∗) ≥ 0.

Proof. Differentiate the administrator’s problem (2) with respect to κ̃ to obtain (i). Note

that if the derivative is negative at a candidate solution satisfying (i), the administrator

would gain by not treating students just above κ∗, thereby obtaining (ii).

Condition 1(i) will play a key role in bounding average treatment effects and also provides

testable implication of cutoff optimality, in that a negative LATE at the cutoff (i.e., ∆(κ∗) <

0) would contradict Assumption 1, because χ > 0. Condition 1(ii) is another testable

implication of the model’s assumptions that the administrator is acting optimally and with

knowledge of ∆(·). It can be tested using methods developed in Dong and Lewbel (2015).

That is, the model’s maintained Assumption 1 would be falsified if one rejected that ∆′(κ∗) ≥
0. Condition 1 need not be sufficient; there can be multiple cutoffs satisfying it.

Assumption 2 (Unique maximand). κ∗ uniquely maximizes the administrator’s problem

(2).

Assumption 2 implies that ∆(·) crosses c′(·) finitely many times and is made to simplify

exposition. Note that uniqueness of κ∗ implies that Condition 1(ii) should be strict (i.e.,

∆′(κ∗) > 0). To guarantee uniqueness, inspection of eq. (2) implies two additional conditions

sufficient for characterizing κ∗.

Condition 2 (Sufficiency). The fact the program was implemented implies that the total

gain from treating those units was at least as large as the total costs, i.e.:

Participation:

1∫
κ∗

∆(x)dx ≥ c(1− κ∗) = χ(1− κ∗). (3)

The fact the program was not extended to κ̂ < κ∗ implies that treating these units would be

sub-optimal, i.e.:

κ∗∫
κ̂

∆(x)dx < c(1− κ̂)− c(1− κ∗) = χ(κ∗ − κ̂). (4)
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Intuitively, Condition 2 uses revealed preferences to make statements about the gains

and costs of treating students who are either treated or untreated. It must be worthwhile

to have treated the treated students, and it could not have been worthwhile to treat the

untreated. A corollary immediately follows.

Corollary 1. The following are globally true about ∆(·):

(i) ∆(·) cannot be constant.

(ii) ∆(·) is not globally monotonically decreasing in x.

Proof. If ∆(·) were constant then κ∗ would either be at a corner or violate Assumption 2.

Condition 1(ii) already rules out ∆(·) decreasing at κ∗ (recall that units above the cutoff are

treated). Consider the behavior of ∆(·) for positive measures of units away from the cutoff.

The second part of Condition 2 says that it must be the case that
∫ κ∗
κ̂

(∆(x)− χ) dx <

0. Moreover, we know that ∆(κ∗) = χ and that ∆(·) is continuous by Assumption 1(ii).

Therefore, if ∆(·) were monotonically decreasing in x in any interval [k̂, k∗], this inequality

would be violated. Similar reasoning, using the first part of Condition 2, shows that ∆(·)
also cannot be monotonically decreasing above κ∗.

It is often said that there is no reason to believe average treatment effects would be the

same for students away from the cutoff, though this notion is not always reflected in empirical

implementations. Corollary 1(i) strengthens this statement by ruling out a constant average

treatment effect. Corollary 1(ii) is consistent with the administrator treating students above,

rather than below, her chosen cutoff. Corollary 1 provides fairly weak statements about the

global behavior of ∆(·). Therefore, I next examine what can be deduced about treatment

effects for subsets of students.

Proposition 1. The ATT is bounded below by the LATE at the treatment cutoff.

Proof. Divide eq. (3) by the measure of treated students (1 − κ∗) and combine this with

Condition 1(i) to obtain

1∫
κ∗

∆(x)dx

1− κ∗︸ ︷︷ ︸
ATT

≥ χ(1− κ∗)
1− κ∗

= χ = ∆(κ∗)︸ ︷︷ ︸
LATE at κ∗

.

Note that a positive fixed cost of treatment, if known, would increase the lower bound

on the ATT. I focus on the case with no fixed cost because it results in more conservative

bounds and also because this section’s results only require qualitative information about the

marginal cost function (i.e., that is constant), not its level. A corollary immediately follows.
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Figure 1: Example ∆(·) with optimal cutoff κ∗

Corollary 2. The ATT is positive.

Proof. This follows directly from Proposition 1 because χ > 0, by Assumption 1(i).

Proposition 1 shows that the discontinuity-based estimate provides a lower bound for the

average effect of treatment on the treated. Intuitively, the administrator chooses κ∗ to set the

marginal benefit from providing the treatment equal to the marginal cost. The fact that the

administrator chose to implement the program, however, implies that the gain to treating

those students must have been at least as large as the total cost of treating them. Note that

the level of the marginal cost does not need to be known by the researcher. Clearly, there is

no informative (i.e., less than ∆) upper bound on the ATT.

However, although we have quite a bit of information about averages of treatment effects

over some intervals of interest, we cannot make statements about ∆(x) for students with

index x 6= κ∗. Figure 1 plots an example average treatment effect function ∆(x) (dashed

black curve) and marginal cost of treatment (solid red horizontal line) against the index x,

and the optimal cutoff κ∗ (dotted blue vertical line). This figure shows a case satisfying

Conditions 1-2 where there are also untreated students with gains greater than their cost of

treatment and treated students with gains smaller than their cost of treatment. Although

Corollary 1(ii) rules out an average treatment effect that is decreasing everywhere, it could
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be the case that ∆(·) is decreasing for some x on either side of κ∗. Therefore, it is useful

to make a statement about the average effect of extending treatment to the untreated. In

particular, we can bound averages of ∆(·) itself for subsets of untreated students.

Proposition 2. There exists an informative upper bound for
b∫
a

∆(x)dx for 0 ≤ a < b ≤ κ∗

if ∆ > χ− (∆− χ)(b− a)/(κ∗ − b).

Proof. Suppose we would like to characterize ∆(·) for values less than x̂ ≤ κ∗. Let µ̂ be

the measure of units under consideration and split eq. (4) into two parts at x̂ and rearrange

terms:
x̂∫

x̂−µ̂

∆(x)dx < c(1−(x̂−µ̂))−c(1−κ∗)−
κ∗∫
x̂

∆(x)dx⇒
x̂∫

x̂−µ̂

∆(x)dx < χ(κ∗−(x̂−µ̂))−∆ (κ∗ − x̂) ,

(5)

where the implication follows from Assumption 1(iii).12

The right side of eq. (5) in Proposition 2 provides an upper bound for the gain from

treating students with indices x ∈ [x̂ − µ̂, x̂]. Because we do not know ∆(·), by assuming

the worst possible average treatment effect (∆) we can find an upper bound for how large

it could be for a measure of students µ̂ and satisfying Condition 2. Intuitively, this upper

bound grows the further below the cutoff we go. To gain more intuition for Proposition 2,

rearrange eq. (5) and divide by the measure of students under consideration µ̂ to obtain

x̂∫
x̂−µ̂

∆(x)

µ̂
dx < (χ−∆)

(
κ∗ − x̂
µ̂

)
+ χ. (6)

The left side of eq. (6) is the average treatment effect among students with indices x ∈
[x̂ − µ̂, x̂]. First, consider the extreme scenario where we want an upper bound for the

average treatment effect for a student with index x̂, ∆(x̂). Take the limit of eq. (6) as the

measure of additional treated students goes to zero:

lim
µ̂→0

 x̂∫
x̂−µ̂

∆(x)

µ̂
dx


︸ ︷︷ ︸

∆(x̂)

< lim
µ̂→0

(
(χ−∆)

(
κ∗ − x̂
µ̂

)
+ χ

)
=∞,

i.e., the expression becomes uninformative when we evaluate it for measure zero of students

to bound ∆(·) at a point. However, consider the other extreme where µ̂ = x̂, i.e., the

12Note this bound will be informative for all but very low values of ∆, i.e., those satisfying ∆ > χ− (∆−
χ)µ̂/(κ∗ − x̂). This condition is always satisfied when using Proposition 2 to bound the ATUT or ATE.
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administrator is considering extending treatment to all students below x̂:

x̂∫
0

∆(x)

x̂
dx < (χ−∆)

(
κ∗

x̂

)
+ ∆. (7)

Equation (7) says that there is an informative upper bound on the average treatment effect

among students with indices x ≤ x̂ (the left side), which grows the further x̂ goes below κ∗,

the higher is the marginal cost χ, and the lower is the lower bound ∆. Setting the measure of

students to whom the treatment is extended equal to κ∗ provides the following result about

the ATUT.

Corollary 3. The ATUT is bounded above by the LATE at the treatment cutoff.

Proof. Let x̂ = µ̂ = κ∗ in eq. (5) and divide through by κ∗ to obtain the result:

κ∗∫
0

∆(x)

κ∗
dx

︸ ︷︷ ︸
ATUT

<
χκ∗

κ∗
= χ = ∆(κ∗), (8)

where the middle term is positive from Assumption 1(i) and the last equality obtains because

∆(κ∗) = χ by Condition 1(i).

Analogously to the upper bound for the ATT, although Corollary 3 bounds the average

of treatment effects for all untreated students, there is no informative (i.e., greater than ∆)

lower bound.

Finally, the prior results can be used to bound the population average treatment effect

(ATE).

Corollary 4. The ATE has informative bounds, with a lower bound of ATELB = ∆κ∗ +

∆(κ∗)(1− κ∗) and an upper bound of ATEUB = ∆(κ∗)κ∗ + ∆(1− κ∗).

Proof. Lower bound: Measure κ∗ units are untreated, and, by Assumption 1(iii), the average

treatment effect for each unit cannot be worse than ∆. Analogously, 1−κ∗ units are treated,

and Proposition 1 says the ATT is no smaller than ∆(κ∗). Integrate and sum the two parts

to form ATELB = ∆κ∗ + ∆(κ∗)(1− κ∗).
Upper bound: Corollary 3 says that the ATUT is no larger than ∆(κ∗). By Assumption

1(iii), the average treatment effect for any treated unit cannot exceed ∆. Integrate and sum

to form ATEUB = ∆(κ∗)κ∗ + ∆(1− κ∗).

Corollary 4 shows that higher values of κ∗ tighten the upper bound on the ATE while

loosening the lower bound on the ATE. Intuitively, treating fewer students increases the
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share of untreated students, who have an upper bound of ∆(κ∗), while increasing the share

of students with very low values of ∆(·), i.e., ∆.

To summarize, optimality of the treatment cutoff κ∗ implies a lower bound on the average

effect of treatment on the treated (ATT) and an upper bound on the average effect of

treatment on the untreated (ATUT). The average treatment effect for the population (ATE)

combines the above bounds. Optimality further implies that ATUT < ∆(κ∗) ≤ ATT.

Moreover, we can contrast what can be said about treatment effects for students with indices

x > κ∗ and those for students with indices x < κ∗. Because the treatment is being provided

to all students in the treated group, we cannot separate how treatment effects accumulate

for students with indices x > κ∗. But the fact that the administrator is not choosing to

extend (i.e., decrease) the cutoff to students with index x̂ < κ∗ provides us information for

how large the average treatment effect can possibly be for students with indices x ∈ [x̂, κ∗).

As with the constant marginal cost of treatment, optimality of κ∗ implies a lower bound

on the ATT and an upper bound on the ATUT when the marginal cost of treatment is

instead variable, as it is in Appendix E. Most bounds remain the same if, instead of being

constant, the marginal cost of treatment is nonincreasing. In particular, if the marginal cost

of treatment is constant or decreasing then it must be the case that ATUT < ∆(κ∗) ≤ ATT.

Though the ATT and ATUT are respectively bounded below and above by the cutoff

LATE when marginal costs are nonincreasing, the LATE does not bound them when the

marginal cost of treatment is strictly increasing. It is worthwhile to discuss the intuition

behind the variable marginal cost results here. Suppose we rotated the marginal cost of

treatment curve in Figure 1 clockwise about the point (κ∗, χ), to model a strictly increasing

marginal cost of treatment. This would mean that the average gain to having treated the

treated (left side of eq. (3) in Condition 2) could have been smaller than the marginal cost

of treatment at the cutoff (χ) and still warrant treatment. Analogously, the gain to treating

the untreated (left side of eq. (4)) in Condition 2) could have been larger than the marginal

cost of treatment at the cutoff and still warrant non-treatment. Then, a strictly increasing

marginal cost of treatment would decrease the lower bound on the ATT and increase the

upper bound on the ATUT, leading to looser bounds on the ATE as well. The opposite

would be true for a strictly decreasing marginal cost of treatment. It is important, however,

to distinguish an increasing marginal cost of treatment from a binding capacity constraint,

the latter of which I examine next.
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3.2 Results with Capacity Constraints

Suppose now that the administrator faces a capacity constraint, µ. Then the administrator

solves

max
κ̃

β

 1∫
κ̃

∆(x)dx

− c (1− κ̃) (2̄)

s.t. 1− κ̃ ≤ µ.

If the desired (i.e., unconstrained) measure of treated students does not exceed capacity, i.e.,

µ∗(≡ 1− κ∗) ≤ µ, then the constraint does not bind and the optimal cutoff κ∗ and resulting

analysis are unaffected, meaning the results from Section 3.1 would also apply here. By

definition, if the capacity constraint is binding the measure of students treated must be

strictly less than the desired measure of students treated, meaning the optimal cutoff and

results may differ from those in Section 3.1.
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Figure 2: Types of binding capacity constraints

Let κ∗ denote the binding solution to the constrained problem (2̄).13 There are two po-

tential cases corresponding to optimal cutoffs, depicted in Figure 2. The cutoff κ∗a indicates

13Assumption 2 is augmented slightly for this section, to also assume that κ∗ uniquely maximizes the
administrator’s constrained problem, (2̄).
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the optimal cutoff, were the administrator unconstrained. Figure 2a indicates the adminis-

trator’s constrained-optimal cutoff in Case a, where µ is such that the administrator would

set k
∗

= 1 − µ, i.e., the capacity constraint is locally binding. For example, Case a would

apply if 1 − µ was just above κ∗a. However, if µ decreased by enough, then the gains from

extending treatment to units up until capacity may not be worth the cost. This is Case b,

depicted in Figure 2b, where a more severe capacity constraint would cause the administrator

to set the constrained-optimal cutoff to κ∗ = κ∗
b
> 1− µ. In Case b, the capacity constraint

is binding, but not locally. Note that, although Figure 2 depicts only two possible solutions,

κ∗a and κ∗
b
, the following analysis does not depend on this.14 Rather, the following results

rely only on knowledge of µ, κ∗, ∆(κ∗), and, potentially, κ∗a. I start by adapting Condition

1.

Condition 1a (Necessity). If κ∗ = 1 − µ solves the administrator’s capacity-constrained

problem (2̄), then ∆(κ∗) > χ.

Proof. Ignoring the measure-zero case(s) where ∆(κ∗) = χ, this follows from Condition 1(i)

and the fact that the capacity constraint is binding, i.e., the administrator would have liked

to treat more students—in particular, lower the cutoff infinitesimally.

Unlike Case a, in Case b the administrator’s choice of cutoff is not locally binding, re-

sulting in the same necessary conditions as in the unconstrained problem.

Condition 1b (Necessity). If κ∗ = κ∗
b

solves the administrator’s capacity-constrained problem

(2̄), then the following necessary conditions must hold:

(i) Marginal Benefit=Marginal Cost: ∆(κ∗) = χ

(ii) Increasing Marginal Benefit: ∆′(κ∗) ≥ 0.

Proof. Identical to Condition 1.

Conditions 1a and 1b(i) have the same testable implication as that derived from Condition

1(i)—that the model can be falsified if the RD estimate is negative. Condition 1(ii)—that

the average treatment effect derivative is nondecreasing at the cutoff—applies in Case b but

need not apply in Case a. However, an alternative testable implication of optimality can

be deduced by combining Condition 1(i) with Condition 1a: ∆(κ∗) > ∆(κ∗a). This could be

tested by using data from two years during which one thought the model parameters ∆(·)
and χ did not change, one where the constraint was Case a-binding (allowing estimation

14For example, ∆(·) might cross χ twice between κ∗a and κ∗ in Figure 2a.

16



of ∆(κ∗)) and another where the administrator’s budget increased, say, due to a large RD

estimate stemming from the binding constraint in the first year (allowing estimation of

∆(κ∗a)). What may look like a lack of “scale-up” for a program may simply reflect that the

marginal benefit at the treatment cutoff is smaller if the constraint is no longer binding.

Further note that one could use the variation in capacity constraints to trace out ∆(·) in

Case a. Interestingly, these last two results are only implementable if the constraint Case-a-

binds in at least one period—otherwise the cutoff, and resulting LATE, would be the same

for both periods. Perhaps counterintuitively, it is possible that we could actually learn more

when the constraint binds in at least one year.

The following participation condition must hold in Case a.

Condition 2a. Suppose κ∗ = 1 − µ solves eq. (2̄). The fact the program was implemented

implies that the total gain from treating those units was larger than the total costs, i.e.:

Participation:

1∫
κ∗

∆(x)dx > χ(1− κ∗), (3a)

where the strict inequality follows from combining Condition 1a with eq. (3) from Condition

2.

Note that Condition 2a does not have an analogue to the second part of Condition 2, i.e.,

eq. (4), which is about optimality of non-treatment of the untreated. This is because the

administrator would have wanted to treat the inframarginal students (i.e., those between the

unconstrained- and constrained-optimal cutoffs); otherwise, the constraint would not have

been binding. In Case b the following condition characterizes the cutoff.

Condition 2b. Suppose κ∗ = κ∗
b

solves eq. (2̄). The fact the program was implemented

implies that the total gain from treating those units was at least as large as the total costs,

i.e.:

Participation:

1∫
κ∗

∆(x)dx ≥ χ(1− κ∗). (3b)

The fact the program was not extended to κ̂ ∈ [1 − µ, κ∗) implies that treating these units

would be sub-optimal, i.e.:

κ∗∫
κ̂

∆(x)dx < χ(κ∗ − κ̂). (4b)

The first part of Condition 2b is the same as the first part of Condition 2. The second

part, eq. (4b), differs from eq. (4) in that it only applies to candidate values κ̂ no less than

17



1 − µ. Intuitively, this reflects the fact that the administrator chose to set the cutoff at κ∗
b

instead of 1− µ.

Neither Corollary 1 nor Proposition 1 obtain in Case a but they, or an analogue, can be

obtained for Case b.15

Corollary 1b. Suppose κ∗ = κ∗
b

solves eq. (2̄). The following are globally true about ∆(·):

(i) ∆(·) cannot be constant.

(ii) ∆(·) is not globally monotonically decreasing in x.

Proof. Analogous to proof of Corollary 1.

Next, I examine what can be learned about ∆(·) for subsets of students, starting with

the treated.

Proposition 1b. Suppose κ∗ = κ∗
b

solves eq. (2̄). The ATT is bounded below by the LATE

at the treatment cutoff.

Proof. Identical to Proposition 1.

Corollary 2a. Suppose κ∗ = 1− µ solves eq. (2̄). The ATT is positive.

Proof. Because the marginal cost of treatment is positive (Assumption 1(i)), eq. (3a) implies

that
1∫
κ∗

∆(x)dx > χ(1− κ∗) > 0; divide through by (1− κ∗) to obtain the result.

Corollary 2a shows that we can bound the ATT from below by zero. This lower bound is

looser than that for the unconstrained ATT, obtained in Proposition 1, which was shown to

be positive. This because, though we know that both ∆(κ∗) and the ATT are nonnegative,

we do not have enough information to order them. For example, consider ∆(·) such that

∆′(x) < 0 for all x ≥ κ∗; in this case the RD estimate would bound the ATT from above.

However, we could use eq. (3a) to tighten this bound if information about χ, the marginal

cost of treatment, were available.16 In contrast, in Case b we obtain the tighter bound

obtained in the unconstrained problem.

Corollary 2b. Suppose κ∗ = κ∗
b

solves eq. (2̄). The ATT is positive.

Proof. Identical to Corollary 2.

15Corollary 1(ii) would also obtain in Case a if the administrator could choose which side of the cutoff to
treat.

16Assuming β was also known.
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As in the unconstrained scenario, we can bound the ATUT in both Case a and Case b.

Due to their length and similarity to earlier results, the remaining proofs in this section are

in Appendix C.

Corollary 3a. Suppose κ∗ = 1 − µ solves eq. (2̄). The following ATUT bounds can be

obtained:

(i) There is an informative upper bound, of ATUTUB = [∆(κ∗)κ∗a + ∆(κ∗−κ∗a)]/κ∗, if and

only if κ∗a is known.

(ii) There is an informative lower bound, of ATUTLB = κ∗a∆/κ
∗, if and only if κ∗a is known

and ∆ < 0.

Proof. See Appendix C.

Corollary 3a(i) shows that knowledge of how severe the capacity constraint is, i.e.,

(κ∗a/κ
∗), tightens the upper bound on the ATUT. The extent to which it can be tightened

depends on κ∗a; however, this bound is still looser than in the unconstrained case because

∆(κ∗) > ∆(κ∗a). Intuitively, if the desired measure of treated students is not known, then we

would have to set κ∗a = 0 to maximize the upper bound, returning the uninformative upper

bound of ∆. Similarly, Corollary 3a(ii) shows that knowledge of (κ∗a/κ
∗) can also tighten

the lower bound on the ATUT; if κ∗a were not known then we would have to set κ∗a = κ∗,

resulting in an uninformative lower bound of ∆. Note that, similar to the unconstrained

case, the fact that the administrator would have desired to treat students between κ∗a and

κ∗ does not provide information about the lower bound for strict subsets of students in this

interval.

Corollary 3b. Suppose κ∗ = κ∗
b

solves eq. (2̄). The following ATUT bounds can be obtained:

(i) There is an informative upper bound, which is tighter if κ∗a is known. If κ∗a is unknown

the upper bound is ATUTUB = [∆(κ∗)(κ∗− (1−µ)) + ∆(1−µ)]/κ∗; if κ∗a is known the

upper bound is ATUTUB = [∆(κ∗)(κ∗ − ((1− µ)− κ∗a)) + ∆((1− µ)− κ∗a)]/κ∗.

(ii) There is an informative lower bound, which is tighter if κ∗a is known. If κ∗a is unknown

the lower bound is ATUTLB = [∆(κ∗)(κ∗− (1− µ)) + ∆(1− µ)]/κ∗; if κ∗a is known the

lower bound is ATUTLB = [∆(κ∗)(κ∗ − κ∗a) + ∆κ∗a]/κ
∗.

Proof. See Appendix C.
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Corollary 3b(i) shows that, in Case b, the upper bound on the ATUT gets tighter as

capacity µ increases. Note that the ATUT upper bound is tighter in Case b than in Case

a. Corollary 3b(ii) shows that, as in Case a, information about (κ∗a/κ
∗) can also tighten the

lower bound on the ATUT.

Finally, we can combine the previous results to bound the ATE.

Corollary 4a. Suppose κ∗ = 1−µ solves eq. (2̄). The following ATE bounds can be obtained.

(i) If ∆ < 0 and κ∗a is unknown then there is an informative lower bound, of ATELB = ∆κ∗,

which is tightened to ATELB = ∆κ∗a if κ∗a is known.

(ii) There is an informative upper bound, of ATEUB = ∆(κ∗)κ∗a + ∆(1− κ∗a), if and only if

κ∗a is known.

Proof. See Appendix C.

There is no informative upper bound for the ATE if κ∗a is unknown. Of course, if χ and

κ∗a were both known then the ATE bounds in Case a would be the same as in Section 3.1.

Corollary 4b. Suppose κ∗ = κ∗
b

solves eq. (2̄). The following ATE bounds can be obtained.

(i) If κ∗a is unknown there is an informative lower bound, of ATELB = ∆(κ∗)(1 − (1 −
µ)) + ∆(1− µ), which is tightened to ATELB = ∆(κ∗)(1− κ∗a) + ∆κ∗a, if κ∗a is known.

(ii) If κ∗a is unknown there is an informative upper bound, of ATEUB = ∆(κ∗)(κ∗ − (1 −
µ)) + ∆(1 − (κ∗ − (1 − µ))), which is tightened to ATEUB = ∆(κ∗)(κ∗ − ((1 − µ) −
κ∗a)) + ∆(1− (κ∗ − ((1− µ)− κ∗a))) if κ∗a is known.

Proof. See Appendix C.

Table 1 presents bounds on the average effect of treatment on the treated, untreated,

and population in the unconstrained and capacity-constrained cases, assuming a constant

marginal cost of treatment.17 Comparing Case a with the unconstrained problem, the lower

bound on the ATT is lower—it is zero instead of the LATE at the cutoff. In contrast with

the unconstrained case, the RD estimate does not bound the ATUT from above. However,

knowledge of κ∗a would tighten bounds, in particular, it would provide an informative lower

bound on the ATUT, which contains units the unconstrained administrator would have

treated. In contrast to Case a, in Case b there are informative lower and upper bounds on

17Making an assumption about the extent to which marginal cost of treatment varied would afford com-
putation of bounds when marginal costs were not constant. See Appendix E.
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Table 1: Comparison of Bounds for Unconstrained and Capacity-Constrained Problems

Unconstrained

Binding Capacity Constraint

Case a Case b

no κ∗a with κ∗a no κ∗a with κ∗a

ATTLB ∆(κ∗) 0 0 ∆(κ∗) ∆(κ∗)

ATTUB ∆ ∆ ∆ ∆ ∆

ATUTLB ∆ ∆ κ∗a∆/κ∗
[∆(κ∗)(κ∗ − (1− µ))+

∆(1− µ)]/κ∗
[∆(κ∗)(κ∗ − κ∗a)+

∆κ∗a]/κ∗

ATUTUB ∆(κ∗) ∆
[∆(κ∗)κ∗a+

∆(κ∗ − κ∗a)]/κ∗
[∆(κ∗)(κ∗ − (1− µ))+

∆(1− µ)]/κ∗
[∆(κ∗)(κ∗ − ((1− µ)− κ∗a))+

∆((1− µ)− κ∗a)]/κ∗

ATELB ∆κ∗+

∆(κ∗)(1− κ∗)
∆κ∗ ∆κ∗a

∆(κ∗)(1− (1− µ))+

∆(1− µ)

∆(κ∗)(1− κ∗a)+

∆κ∗a

ATEUB ∆(κ∗)κ∗+

∆(1− κ∗)
∆

∆(κ∗)κ∗a+

∆(1− κ∗a)

∆(κ∗)(κ∗ − (1− µ))+

∆(1− (κ∗ − (1− µ)))

∆(κ∗)(κ∗ − ((1− µ)− κ∗a))+

∆(1− (κ∗ − ((1− µ)− κ∗a)))

Note: Assuming ∆ < 0; otherwise the ATT lower bound is uninformative in Case a. These results assume a constant

marginal cost of treatment. Appendix E examines nonconstant marginal costs of treatment.

the ATE even if κ∗a is unknown, as the decision to not treat students between 1 − µ and

κ∗
b

contains useful information. Knowledge of κ∗a would further tighten the ATE bounds in

either Case a or Case b; as shown in Section 3.3, this type of information could be obtained

by comparing budget requests and realized allocations. Finally, though the derivative-based

test of cutoff optimality does not apply when the constraint Case-a-binds (though it would

still apply in a Case-b-binding constraint), the nonnegative LATE testable implication still

does apply, and there is a new testable implication of optimality (which could be applied

if one had access to data for binding and non-binding periods) and a new policy-relevant

result that may help explain why it is difficult to “scale up” successful programs to larger

populations (see, e.g., Elmore (1996) and Sternberg et al. (2006)).

3.3 Distinguishing Between Unconstrained and Constrained Cases

Computing the relevant bounds requires knowing whether the administrator’s chosen cutoff

corresponds to the unconstrained case, Case a, or Case b. This could be accomplished by

gathering data on a (i) requested budget, (ii) approved/allocated budget, and (iii) realized

budget, i.e., the amount actually used by the administrator. If the requested and allocated

budgets were the same we could surmise the administrator was not constrained and apply

bounds from Section 3.1; otherwise, we could surmise the capacity constraint was binding. If
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the administrator used the entire allocated budget, we could surmise that κ∗ satisfies Case a,

i.e., the capacity constraint was locally binding. If instead, the administrator did not use the

entire allocated budget we could surmise that κ∗ satisfies Case b. Such data could be obtained

via analysis of, say, a state’s budget process. For example, in New York state, agencies make

budget proposals, which after being amended are included in an executive budget; there

is an end-of-cycle report on the realized amounts the next fiscal year.18 Alternatively, one

could find a situation where the cutoff had been chosen before capacity constraints were

implemented, or even obtain data on κ∗a from credible comparison groups.

Results from Section 3.2 show that, in addition to identifying the relevant case as dis-

cussed above, bounds can be tightened in both Case a and Case b if we know the uncon-

strained optimal cutoff, i.e., κ∗a, even when the marginal cost of treatment χ is unknown.

For example, in Case a one could compare an administrator’s budget request with the actual

amount expended and exploit the fact that the fraction, (κ∗a/κ
∗), which is required to com-

pute the bound, is a known function of the ratio of requested and realized budgets, because

the unknown marginal cost of treatment cancels when computing the requested/realized

budget ratio.19

3.4 Inference

Consider a partially-identified parameter θ =ATT, ATUT, and ATE, where θ ∈ ΘID. The

interval ΘID = [θLB, θUB] ⊆ Θ ≡ [∆,∆] is the identified set (sometimes referred to as the

“identification region”) for θ, i.e., the interval contained by the sharp bounds of θ at either

end. For example, if θ were the ATT in the unconstrained case then ΘID = [∆(κ∗),∆].

Following Imbens and Manski (2004), I construct confidence intervals that asymptotically

contain θ with a desired probability.20

As shown in Table 1, bounds for the ATT, ATUT, and ATE in the unconstrained case

only depend on κ∗,∆(κ∗),∆, and ∆, while bounds in the capacity-constrained cases may

additionally depend on κ∗a and µ (in addition to potentially depending on ∆(κ∗) instead of

∆(κ∗)). Treating the primitives of the environment as fixed within a particular period, κ∗ (or,

if applicable, κ∗) can be treated as fixed, and the only source of variation in bounds estimates

18https://www.budget.ny.gov/guide/brm/item2.html
19Let the requested budget be B∗ = (1−κ∗)χ and the realized budget (which, in Case a would also be the

approved budget) be B
∗

= (1−κ∗)χ. We can compute B∗/B
∗

= ((1−κ∗a)χ)/((1−κ∗)χ) = (1−κ∗a)/(1−κ∗),
which permits the solution for κ∗a, even when marginal cost χ is unknown.

20Tamer (2010) outlines two types of confidence intervals of potential interest in a partial-identification
setting: the ones I consider here, which contain the partially identified parameter with a certain probability
(Imbens and Manski (2004); Stoye (2009)), and ones that contain the identified set with a certain probability
(Horowitz and Manski (2000)).
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comes from sampling error in the estimate of ∆(·) at the treatment cutoff.21 There are many

alternatives to compute standard errors for the cutoff LATE, e.g., from a regression coefficient

or via the bootstrap (e.g., Calonico et al. (2014)); this section takes the RD estimate and

associated standard error as given.

Depending on θ and whether/how the capacity constraint is binding, different cases

may apply. First, θLB and/or θUB may not depend on the estimated average treatment

effect at the cutoff, in which case it/they would be treated as known.22 Second, if only

θLB (or, mutatis mutandis, θUB) needed to be estimated then Θ̂ID = [θ̂LB, θUB], where θ̂LB

is identical to θLB except that ∆̂(κ∗) has been substituted for ∆(κ∗) everywhere. Under

asymptotic normality, the 100(1 − α)% confidence interval for θ in this (one-sided) case

would be [θ̂LB− z1−αSE(θ̂LB), θUB], where z1−α is the 1−α quantile of the standard normal

distribution and the standard error SE(θ̂LB) is calculated using the relevant bound in Table

1.23 Third, if both θLB and θUB needed to be estimated then the 100(1 − α)% confidence

interval for θ would be [θ̂LB − cnSE(θ̂LB), θ̂UB + cnSE(θ̂UB)], where cn solves

Φ

(
cn +

θ̂UB − θ̂LB

max{SE(θ̂LB), SE(θ̂UB)}

)
− Φ (−cn) = 1− α, (9)

and where Φ denotes the standard normal CDF.24 Table 2 summarizes identified sets and

100(1 − α)% confidence intervals for the main parameters in the scenario without capacity

constraints. Confidence intervals for these parameters in other scenarios would be con-

structed by appropriately adjusting the relevant bounds in Table 1.

4 Applications

This section shows how this paper’s theoretical results can be used to extend findings from

regression-discontinuity designs. There are two applications, which are in the economics of

education and examine contexts where it seems reasonable to expect that program adminis-

21In practice, Θ may be unknown, making it necessary to use other information, e.g., estimates from
another data sources, to estimate Θ. Since these estimates are likely very precise compared to the estimated
average treatment effect at the cutoff, which typically relies on a small fraction of observations in the sample,
I abstract from such uncertainty here.

22For example, when there is a Case-a-binding capacity constraint, the ATT has a lower bound of zero
(and an uninformative upper bound, as in the unconstrained case).

23Note that in the case where one bound is known, the corrections of Imbens and Manski (2004) and
Stoye (2009), which account for the fact that θ can be up against only one of the bounds of ΘID when
θUB − θLB > 0, are not necessary.

24Note the expression for the critical value cn is slightly different from that in Imbens and Manski (2004)
because I use the standard error of the estimated bounds (both of which are computed using the same sample

size n), canceling the
√
n in the numerator of their equation (7). If θ̂UB − θ̂LB was not very large relative to

the standard errors of the bounds estimates then one should use critical values from Stoye (2009).
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Table 2: Identified Sets and Confidence Intervals for Parameters in Unconstrained Scenario

θ Estimate of Identified Set for θ 100(1− α)% Confidence Interval for θ

ATT [∆̂(κ∗),∆] [∆̂(κ∗)− z1−αSE(∆̂(κ∗)),∆]

ATUT [∆, ∆̂(κ∗)] [∆, ∆̂(κ∗)− z1−αSE(∆̂(κ∗))]

ATE
[∆κ∗ + ∆̂(κ∗)(1− κ∗),
∆̂(κ∗)κ∗ + ∆(1− κ∗)]

[∆κ∗ + ∆̂(κ∗)(1− κ∗)− cnSE(∆̂(κ∗))(1− κ∗),
∆̂(κ∗)κ∗ + ∆(1− κ∗) + cnSE(∆̂(κ∗))κ∗]

Bounds are computed for unconstrained scenario (see Table 1). SE(∆̂(κ∗)) is the standard error of ∆̂(κ∗)

and cn is defined in eq. (9).

trators had information about the gains and costs of treatment.

Recall that the administrator’s objective depends on the total gain from treatment in the

baseline model presented in Section 2. This specification is a good fit for many applications

of interest, in particular, the applications studied here, which study either wages directly, or

measures of human capital, e.g., GPA. Given a rental rate for human capital, maximizing

human capital, maximizing wages, and maximizing output may be viewed as equivalent,

meaning the objective considered here would result in the efficient allocation.

To most fully illustrate the theoretical results, I first examine a context where it seems

likely that the administrator’s capacity constraint binds and then consider a context where

the constraint is likely not binding. I check the model implication that the average treat-

ment effect at the cutoff is nonnegative for both applications. For the latter, unconstrained,

application, I also test whether the average treatment effect is increasing at the cutoff (ap-

proaching from the untreated side).25 Reassuringly, I cannot reject that the cutoff was chosen

optimally by an informed administrator in any of the falsification tests.

One of the studies employs a fuzzy design, so I first show how the earlier results pertaining

to sharp designs generalize.26 Some new notation is necessary. Let ω(x) denote the adminis-

trator’s intended treatment group for student with index x.27 For example, if students with

indices x above κ are targeted for a program, then ω(x) = 1 for x ≥ κ and ω(x) = 0 for

x < κ. For simplicity, here I consider the case where the probability of being treated (τ = 1)

depends on ω according to ρω = Pr{τ = 1|ω};28 Appendix A shows that the mean effect of

25 Recall that this condition does not hold for a Case-a-binding constraint.
26These results are derived for when the capacity constraint is not binding; analogous results obtain when

the constraint binds.
27Recall that the index x is distributed uniformly over [0, 1].
28That is, treatment probability only depends on x through ω(x). The treatment probabilities could be

measured by computing average treatment rates on either side of the cutoff.
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intending to treat among the (intended) treated (ITT) and intending not to treat among the

(intended) untreated (ITUT) can be bounded when treatment probabilities ρω also depend

on x, as may be the case in some applications. In a fuzzy design, 0 ≤ ρ0 < ρ1 ≤ 1, i.e., not

all students targeted for treatment are necessarily treated and some students not targeted

for treatment may be treated; however, the probability of treatment must increase discon-

tinuously at the cutoff (Hahn et al. (2001)). In a fuzzy design, the administrator chooses the

treatment cutoff κ̃ to maximize her expected objective:29

max
κ̃

ρ0

κ̃∫
0

(∆(x)− χ)dx+ ρ1

1∫
κ̃

(∆(x)− χ)dx)

 . (10)

The optimal cutoff κ∗ is characterized by (ρ1−ρ0)∆(κ∗) = (ρ1−ρ0)χ, implying that ∆(κ∗) =

χ. Note that this condition is identical to Condition 1(i) for the sharp design (i.e., where

ρ0 = 0 and ρ1 = 1). Moreover, multiplying through by ρω shows that the fuzzy design

returns exactly the same bounds for the ATT and ATUT as does the sharp design when ρω

are constant within treatment status.30

The tests of model assumptions can be described using a sharp design without any loss

of generality.31 In particular, the derivative sign test implied by Condition 1(ii) is the same.

Therefore, I use the sharp design to show how we can test the model assumptions. Suppose

students with index x ≥ κ∗ were treated; although x is defined as the quantile of the running

variable w, the testable implication regarding optimality would be the same regarding the

derivative of the cutoff LATE estimated using the running variable. In this context, the

assumptions that the administrator knows ∆(·) and is acting optimally would be rejected

if we found that either ∆′(κ∗) < 0, because the administrator would gain by increasing the

cutoff and avoid treating inframarginal students with gains lower than that for students at

the cutoff (recall that units above the cutoff are treated), or ∆(κ∗) < 0, because the marginal

cost of treatment is positive, contradicting optimality of treating students at κ∗. Assume

the expected outcome for a student with index xi, E
[
Yτ(xi),i

]
, depends on treatment status

τ(xi) and the (transformed) running variable (xi − κ∗) according to the following statistical

29As was the case in the theoretical model, β has been set to 1. Recall that the marginal costs of treatment
are assumed to be constant in the model. Though estimates of cost functions are not widely available, I was
able to find evidence supporting this assumption for the first application.

30 Note that if the administrator were allowed to choose (ρ0, ρ1), subject to the constraint 0 ≤ ρ0 < ρ1 ≤ 1,
she would choose the sharp design because ATUT < χ ≤ ATT, which means the administrator would always
want to shift treatment probability from units below the cutoff to those above. Therefore, interior values
of (ρ0, ρ1) must reflect a technological constraint precluding perfect enforcement (i.e., ρ1 < 1) or exclusion
(i.e., ρ0 > 0).

31Dong and Lewbel (2015) show that a similar result holds for fuzzy designs.
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relationship:32

E
[
Yτ(xi),i

]
= α0 + α1(xi − κ∗) + α2τ(xi) + α3τ(xi)(xi − κ∗),

and the observed outcome for student i, Y̌i, measures E
[
Yτ(xi),i

]
with an independent error

εi according to:

Y̌i = E
[
Yτ(xi),i

]
+εi = α0 + α1(xi − κ∗) + α2τ(xi) + α3τ(xi)(xi − κ∗) + εi. (11)

The estimate of the LATE at the treatment cutoff is ∆̂(κ∗) = α̂2. Dong and Lewbel (2015)

show that the estimate of the average treatment effect derivative at the cutoff here would

be ∆̂′(κ∗) = α̂3. Therefore, the model has a testable implication, i.e., is falsifiable, by using

α̂3 to test the null hypothesis H0 : α3 ≥ 0, versus the alternative hypothesis H1 : α3 < 0.

Evidence strong enough to reject the null that α3 ≥ 0 would cast doubt on the validity of

Assumption 1. Moreover, evidence strong enough to reject the null hypothesis that α2 ≥ 0

would also cast doubt on the validity of the model assumptions.

4.1 Hoekstra (2009): “The Effect of Attending the Flagship State

University on Earnings: A Discontinuity-based Approach”

This section applies this paper’s results to Hoekstra (2009), which studies the effect of at-

tending a flagship public university on subsequent mean earnings for a sample of white males

between the ages of 28 and 33. The objective considered in eq. (2), where the administrator

seeks to maximize the amount gained (i.e., increase in wages) net cost of treatment (i.e., hav-

ing a student attend a high-quality public university) may be a good fit for this environment

because a public university likely has an interest in the education of the state’s denizens,

especially if these students become more productive and stay in the state upon graduation

(70% of applicants to the flagship eventually earn wages in the same state).33

Hoekstra uses a fuzzy design in which treatment was targeted to students at or above

a covariate-adjusted SAT score, i.e., ω(x) = 1 ⇔ x ≥ κ∗. The intended-treated students

32This relationship only needs to be approximately true in a neighborhood around κ for the argument
made here. However, if this were instead thought to be a reasonable approximation to the global behavior
of E

[
Yτ(xi),i

]
, and, therefore, ∆(x), then Appendix B shows that inclusion of an additive independent error

ε does not affect the choice of κ∗ or theoretical results. Some studies also use polynomial functions of
the running variable, which affects how to estimate ∆′(κ∗) but, does not affect the test results for these
applications.

33Epple et al. (2006) find that a model where universities optimize student achievement can explain the
data. Because students’ achievement measures their human capital, which itself augments wages, one could
therefore view universities as wanting to maximize future wages. Similarly, maximizing students’ completing
college or finding (or keeping) jobs would naturally be captured by having the administrator maximize
wages, as these schooling and labor market outcomes are all positively related to wages. That is, though it
admittedly abstracts from alternative dimensions universities may care about, modeling public universities
as maximizing student wages may reasonably approximate their objectives.
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(ω(x) = 1) were offered admission to the flagship and, for the most part, attended it. The

intended-untreated students (ω(x) = 0) represent a combination of students who do not

pursue any higher education, students who attend some other institution of higher educa-

tion, and a small number of students who attend the flagship university, though the author

provides evidence that most likely attend another institution. A nonconstant ∆(x) then

represents the oft-studied heterogeneity in average returns to education, with respect to stu-

dent characteristics (x) and applied to the case of selective public universities (Y1) versus

less-competitive institutions (Y0). The inferential problem with extrapolating from the RD

estimate is that the average gain may vary between students with different preparation levels

(i.e., SAT scores).

Research by Epple et al. (2006) shows that universities admit students until their ca-

pacity constraints bind, suggesting that Hoekstra (2009) reflects a Case-a-binding capacity

constraint.34 The marginal cost of treatment is assumed to be constant. This assumption is

supported by Izadi et al. (2002), who estimate a CES cost function for universities. Based on

parameter estimates provided in that paper, one cannot reject that university cost functions

are linear in the number of students served.35 This assumption is also supported by other

work, such as Epple et al. (2006), who estimate a model of the higher education market for

private colleges and do not find evidence that the cost of serving students is nonlinear.36

Recall that the fuzzy design returns exactly the same bounds as does the sharp design,

when ρω are constant within treatment status.37 The main result reported in Hoekstra

(2009) is that attending the flagship university increases earnings by 20% for students at the

treatment cutoff, relative to attending a less-competitive institution. This positive estimate

means this context is consistent with (constrained-) optimality of the cutoff, implied by

34 The method proposed earlier to distinguish between Case-a- and Case-b-binding capacity constraints—
compare proposed, approved, and enacted budgets—unfortunately cannot be implemented because the iden-
tity of the university is not publicly available. Therefore, assuming a Case-a-binding constraint is reasonable,
as it likely corresponds to more conservative bounds.

35Specifically, I test whether the second derivative of the cost of serving arts and science students is zero
in the number of that type of student, and find that even an 80% confidence interval for the second derivative
contains zero for both student types. Izadi et al. (2002) use data from the UK.

36See Table II on page 907 of Epple et al. (2006).
37 Although Hoekstra (2009) allowed for non-constant ρω, the estimates of this relationship, ρω(x), were

unfortunately not available; this forces this application to treat the ρω as constant within treatment status.
Figure 1 of Hoekstra (2009) provides visual guidance suggesting that, though there may be appreciable
variation in treatment probabilities with respect to x in the intended-untreated group, there is not very
much variation in treatment probabilities with respect to x among students in the intended-treated group.
If then, we could approximate ρ1 as constant, this would imply the results for the lower bound on the ATT
would be the same as for the sharp case. Regardless, although perhaps not ideal, assuming a constant ρω does
not substantially affect the results of this application, due to the loose bounds achieved in Case-a-binding
constrained case, summarized in Table 3.
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Condition 1a; that is, we cannot falsify the model assumptions.38

As noted by Hoekstra, this estimate seems fairly high. For example, Ashenfelter and

Rouse (1998) estimate that an additional year of schooling increases earnings by 9%, while

Behrman et al. (1996) find that an additional year of schooling increases earnings by 6-8% and

that there is a 20% increase from attending a large public college versus only graduating from

high school. In contrast, Hoekstra (2009) estimates a 20% increase from attending a flagship,

versus mostly a less-competitive, institution—that is, among students pursuing higher edu-

cations. The large estimated effect in Hoekstra (2009), though perhaps not quite expected

in a context in which the treatment cutoff was chosen by a utility-maximizing administrator,

is somewhat easier to rationalize when viewed through the lens of Condition 1a—that the

RD estimate exceeds the marginal cost of treatment when the capacity constraint binds. In

contrast, it might be hard to believe that an unconstrained utility-maximizing administrator

chose a cutoff with such a large estimated cutoff average treatment effect.

I now show how bounds on the ATT, ATUT, and ATE are tightened by this paper’s

results. I first discuss how I calibrate values for ∆, ∆, and κ∗, which are required to bound

parameters of interest. The uninformative bounds ∆ = −$7, 200 and ∆ = $18, 000 are

calibrated using minimum and maximum estimates of quantile treatment effects from at-

tending flagship (versus non-flagship) public universities on earnings, as reported in Tables

5 and 6 of Andrews et al. (2012) (the working paper version of Andrews et al. (2016); the

minimum and maximum effects, -16% and 40%, respectively, are then multiplied by $45,000,

which is roughly the average baseline annual income for the untreated.39 The share of

intended-treated students κ∗ is calibrated to 0.5 based on acceptance rates of 40% and 66%

at AT-Austin and Texas A&M, respectively.40

When we use the bounds for the ATT when the capacity constraint Case-a-binds, we can

only surmise that the effect of treatment on the treated is positive, i.e., ATT > 0. Table

3 summarizes the bounds. As we can see from Col. (1), although the lower bound on the

ATT is tightened by $7,200 (i.e., 29%, as shown in Col. (2), which presents the width of

each identified set in terms of the potential (i.e., uninformative) width ∆ − ∆) and the

lower bound of the population ATE is tightened by $3,600 (i.e., 14%, as shown in Col. (2)),

the Case-a-binding constraint results in fairly wide bounds for parameters of interest. For

example, the interval for the population ATE contains zero.

38 This result is from Table 1 of Hoekstra (2009), the first two rows of which report RD estimates of the
enrollment effect (i.e., effect of treatment on the treated for students at the cutoff) of 0.223 (with a standard
error of 0.079) and 0.216 (with a standard error of 0.081), which respectively did not and did control for
additional variables (e.g., residual high school GPA).

39This is based on correspondence with the author.
40See https://www.usnews.com/best-colleges/university-of-texas-3658 and https:

//www.usnews.com/best-colleges/texas-am-college-station-10366.
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Table 3: Summary of Parameter Bounds in Hoekstra (2009), measured in $

Parameter θ Identified Set ΘID Relative Width of Identified Set ΘID

(1) (2)

ATT [0, 18,000] 0.71

ATUT [-7,200, 18,000] 1.00

ATE [-3,600, 18,000] 0.86

[∆,∆] [-7,200, 18,000]

Bounds are computed assuming Case-a-binding capacity constraint, where κ∗a is unknown (see Table 1). ∆ =

−7, 200 and ∆ = 18, 000 are calibrated using minimum and maximum estimates of quantile treatment effects

from attending flagship (versus non-flagship) public universities on earnings, as reported in Tables 5 and 6 of

Andrews et al. (2012); the minimum and maximum effects, -16% and 40%, respectively, are then multiplied by

$45,000. κ∗ is calibrated to 0.5 based on acceptance rates of 40% and 66% at AT-Austin and Texas A&M,

respectively. See https://www.usnews.com/best-colleges/university-of-texas-3658 and https://

www.usnews.com/best-colleges/texas-am-college-station-10366.

4.2 Lindo et al. (2010): “Ability, Gender, and Performance Stan-

dards: Evidence from Academic Probation”

This section applies this paper’s results to Lindo et al. (2010), which studies how being

placed on academic probation affects subsequent outcomes for university students. They

exploit a sharp discontinuity design, where students with GPAs below a chosen cutoff are

assigned to academic probation, i.e., τ(x) = 1⇔ x ≤ κ∗, where x is the student’s GPA last

semester. Students on academic probation must keep their GPAs above a certain standard,

else they will be placed on academic suspension. The estimation sample contains students

from three campuses of a public university in Canada.

As with Hoekstra (2009), the fact that the university is public means it is reasonable to

expect that it would value student achievement. Therefore, I focus on the effect of being

placed on probation on subsequent GPA, which means that the average treatment effect ∆(x)

is the expected gain in subsequent GPA if a student with prior GPA quantile x were placed

on academic probation. Lindo et al. (2010) use a simplified version of Bénabou and Tirole

(2000) to motivate why there may be heterogeneity in the effect of probation on student

outcomes; the takeaway being that students far above the cutoff naturally perform well in

their classes, and, therefore, would gain little from being put on probation. The university

faces a cost of placing students on probation, which captures the fact that students are

offered additional counseling and support services to help them improve their achievement.

Therefore, assigning all students to probation would mean incurring costs for students who
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have little expected gain. Because only a subset of students are placed on probation and the

effects of probation likely depend on student ability, it is useful to think about how we can

extrapolate away from the treatment cutoff. The university could have treated more students

by sending out more probation letters and hiring the counselor/tutor for more hours, which

means it is reasonable to assume the capacity constraint was not binding in this application.

I begin by conducting the falsification test on the average treatment effect derivative,

implied by Condition 1(ii). The sign of ∆′(κ∗), and therefore the rejection region for the

falsification test, is reversed here because treatment is offered to students below κ∗, mean-

ing that extending treatment to students above κ∗ should not improve the administrator’s

objective. Using information made available by the journal’s replication policy, I ran regres-

sion eq. (11), the results of which are presented in Table 4. I find that α̂3 = 0.047, with

a standard error of 0.094, which means that there is not strong evidence that the average

treatment effect is increasing at the cutoff (p-value 0.31 that the average treatment effect

derivative is greater than zero).41 Moreover, the positive RD estimate (see below) means

the model passes the nonnegative LATE falsification test, implied by Condition 1(i). That

is, there is not enough evidence to reject that the model assumptions hold here. Therefore,

assuming that the model assumptions indeed hold, the first result is that we can rule out

constant treatment effects, by Corollary 1(i).

Table 4: Results from main specification in Lindo et al. (2010)

Dependent variable:
Regressor: GPA next semester (Y̌i)

Intercept 0.312
(α̂0) (0.019)

Running variable - cutoff 0.699
(α̂1) (0.053)

Treatment indicator 0.233
(α̂2) (0.031)

Treatment indicator × (running variable - cutoff) 0.047
(α̂3) (0.094)

Obs. 11,258
R2 0.035
Note: Standard errors are in parentheses

The main result of Lindo et al. (2010) is that the estimated treatment effect of being

41The data are available at https://www.aea-net.org/articles.php?doi=10.1257/app.2.2.95; R
code for replication can be found at Chi and Dow (2014); R Core Team (2016).
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placed on academic probation on the next term’s grade performance for the full sample is

∆̂(κ∗) = 0.233 higher GPA points.42 By extending this finding using the results of this

paper, we can bound the ATT and ATUT according to: ATT ≥ ∆̂(κ∗) = 0.233 > ATUT. In

other words, placing students below the treatment cutoff on academic probation would, on

average, increase their GPA the next term by at least 0.233 points, while doing so for students

above the treatment cutoff would increase their GPA next term by at most 0.233 points,

on average. Intuitively, on average, academic probation may be more useful for students at

the bottom of the grade distribution, by providing them with an external commitment to

increase their performance above some minimal level.43

Lindo et al. (2010) affords us an opportunity to explore the upper bound on the average

gain from treating all students with indices above a prospective cutoff x̂. We must first

adapt equation eq. (7) to take into account that the treatment in this example is assigned to

students below the cutoff, resulting in an average effect of treating “the rest of the untreated”

beyond x̂, i.e., ATUT(x̂) ≡ (
∫ 1

x̂
∆(x)dx)/(1− x̂) ≤ [χ(1−κ∗)−∆(x̂−κ∗)]/(1− x̂). Note this

bound increases as we increase the prospective cutoff x̂, i.e., decrease the size of the “rest of

the untreated” group.

Thus, we need values for (χ, κ∗,∆) to solve for the upper bound on ATUT(x̂). By

Condition 1(i) we can use the estimated average treatment effect at the cutoff, 0.233 GPA

points, as an estimate of the (constant) marginal cost of treatment. Next, by noting that

25% of students received the treatment ((Lindo et al., 2010, p. 101)) we can set κ∗ = 0.25.

Finally, we need to obtain the worst-case scenario from being assigned the treatment, which

is mostly composed of a letter and some counseling and tutoring services. One option would

be to assign a null effect, i.e., set ∆ = 0. However, we could be more conservative by taking

into account the opportunity cost of students’ time, if we had an idea of how studying affected

GPA and conservatively assumed that participating in the extra services (i) resulted in a

complete crowd-out of study time and (ii) did not ceteris paribus increase grades. Assuming

students on probation had one hour of time taken by these extra services per week, we can

use the estimate from Stinebrickner and Stinebrickner (2008), that an hour of studying per

day increases one’s college GPA by 0.36 points, to calibrate the time-cost of this hourly

meeting to ∆ = −0.36/7 = −0.051 GPA points.

Figure 3 illustrates the results. We can see that the upper bound on ATUT(x̂) starts

at the upper bound on the ATUT—i.e., ∆(κ∗)—when x̂ = κ∗, at the left side (blue dotted

line) and then increases as the administrator increases the prospective cutoff above which all

42This can be found in Table 5, in column (1) of panel A of Lindo et al. (2010).
43 This is a conjecture. Proposition 2 shows that we can obtain bounds for subsets of untreated students.

However, no such bounds can be obtained for subsets of treated students, such as those with the lowest
GPAs.
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Figure 3: Upper Bound on Treating the “Rest of the Untreated”in Lindo et al. (2010)

students would receive treatment. For example, the mean GPA increase from treating the

top 70% of students in terms of prior GPA (i.e., x̂ = 0.3) would be no larger than 0.253 and

the mean increase from treating the top half of students (i.e., x̂ = 0.5) would be no larger

than 0.375 GPA points. Although these bounds increase in x̂, they may be small enough to

be of potential use to policymakers.

To show how much information is contained in this paper’s bounds, I report confidence

intervals for the ATT, ATUT, and ATE, which depend on (∆,∆, κ∗), in addition to the

estimate of ∆(κ∗). I calibrate the remaining parameter ∆ by observing that Lindo et al.

(2010) note that the GPA cutoff for receiving the treatment ranged from 1.5 to 1.6 between

campuses (page 98); since the maximum GPA is 4.0, this results in a calibrated value of the

maximum gain from treatment of ∆ = 2.5 GPA points.

Table 5 shows bounds for the identified sets and confidence intervals for the ATT, ATUT,

and ATE. Both the identified sets (Col. (1)) and confidence intervals (Col. (2)) for the ATT

and ATUT are tighter than their possible ranges. This is perhaps more clearly shown in

Col. (3), which presents the width of each confidence interval in terms of the potential

(i.e., uninformative) width ∆ − ∆. The 95% confidence interval for the population ATE

is [0.007,0.838] GPA points, which is one-third of the size of the potential width of the set

containing this parameter, and strictly positive.44

44Following the formula for cn in eq. (9), the lower bound is ∆(1−κ∗)+∆̂(κ∗)(κ∗)−1.645SE(∆̂(κ∗))(κ∗)

and the upper bound is ∆̂(κ∗)(1− κ∗) + ∆(κ∗) + 1.645SE(∆̂(κ∗))(1− κ∗), i.e., cn ≈ z0.95.
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Table 5: Summary of Parameter Bounds in Lindo et al. (2010), measured in GPA points

Parameter θ Estimate of Identified Set Θ̂ID 95% Confidence Interval for θ Relative Width of CI

(1) (2) (3)

ATT [0.233, 2.500] [0.182, 2.500] 0.91

ATUT [-0.051, 0.233] [-0.051, 0.284] 0.13

ATE [0.020, 0.800] [0.007, 0.838] 0.33

[∆,∆] [-0.051, 2.500] –

Bounds are computed assuming non-binding capacity constraint (see Table 1), adjusted for treatment below the cutoff.

∆ = −0.051 GPA points is calibrated using opportunity cost of an hour of counseling per week ((Stinebrickner and

Stinebrickner, 2008, Table 7a)) and ∆ = 2.5 GPA points is calibrated using the largest difference between treatment

cutoff (GPA of 1.5) and maximum GPA of 4.0 ((Lindo et al., 2010, p. 98)). κ∗ is 0.25, per Lindo et al. (2010), page

101.

5 Discussion

This paper represents a first step towards showing how one can use plausibly available

information and a simple economic model to generalize findings from RD designs.45 We can

exploit information revealed by the optimizing behavior of the administrator to extrapolate

from the LATE at the treatment cutoff, which without further structure applies to only

measure zero of the population, to obtain bounds for the effect of treatment on the treated,

untreated, and the entire population. Perhaps the most intuitive findings relate to the

case where the capacity constraint does not bind: i) if treating students is costly and the

treatment cutoff has been chosen optimally, the ATT must be positive and treatment effects

cannot be constant; ii) RD-based estimates provide a lower bound for the ATT; and iii) RD-

based estimates provide an upper bound for the ATUT. Notably for applying these results,

the model generates testable implications: if the average treatment effect at the cutoff is

negative or decreasing (when approaching the cutoff from the untreated side), then we can

reject that the cutoff was chosen optimally by an administrator informed about average

treatment effects. If the capacity constraint does bind, then the treatment-effect sign test

still allows one to falsify the model and bounds are generally looser. The treatment-effect-

derivative test no longer applies, but there emerges a new testable implication of cutoff

optimality, as well as an intuitive explanation for why program “scale-up” can be difficult in

real-life applications. The theoretical results were then demonstrated using two applications.

I cannot reject that the cutoff was chosen optimally by an informed administrator in any

of the falsification tests conducted, which may increase confidence that the contexts studied

45This paper also relates to work non-parametrically estimating treatment effects.
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here constitute reasonable applications of the theoretical results.

The findings in this paper have several implications for the use of RD results in policy. We

may incorrectly surmise that some programs are ineffective and eliminate them, even though

in reality they are quite effective for the treated population. Strikingly, such a mistake

would be more likely for a program with a very low marginal cost, holding constant the ATT.

This point is illustrated in Figure 4, which plots average treatment effects associated with

hypothetical programs at two sites, A and B, with respective conditional treatment effect

functions ∆A(·) (solid black line) and ∆B(·) (dashed black line). The programs have different

marginal costs of treatment, where χB > χA, and happen to have the same cutoff κ∗ and

the same ATT. The difference in marginal costs means that optimization by respective site

administrators implies that ∆B(κ∗) > ∆A(κ∗). If only based on these RD estimates, a

policymaker would likely fund B over A because it has a higher LATE, even though A

provides the same gain on the treated, at a lower cost. In a sense, this paper provides

an illustration of the importance of taking into account the costs, not just the benefits,

of treatment. Additional policy-relevant results obtain if we can relate the policymaker’s

objective with that of the administrator. First, if a policymaker knew that their valuation of

treatment gain in terms of treatment cost (i.e., β) was at least as high as the administrator’s

then they should definitely treat those units treated by the administrator. Second, the

upper bound on the average treatment effect for subsets of the untreated, which increases

in distance from the cutoff, can help rule out whether it would be worthwhile to extend

treatment to subsets of units below the cutoff.

Though in this paper’s setting estimates of the LATE at the treatment cutoff must be

positive if treating students is costly, we cannot compare them with the ATE, in the manner

of LaLonde (1986), Dehejia and Wahba (1999), or Smith and Todd (2005), without further

information. There is some work comparing findings from RD and experimental designs

(Buddelmeyer and Skoufias (2004), Black et al. (2007), Cook and Wong (2008), Gleason et al.

(2012), Barrera-Osorio et al. (2014)), but unfortunately, none consider the case of a program

where the treatment cutoff seems to have been chosen by an administrator with institutional

knowledge of the environment (e.g., in Barrera-Osorio et al. (2014) the evaluators were

external and choose a poverty index as the threshold for treatment). However, the results

here do suggest that RD estimates may be higher when cutoffs are chosen by external

evaluators without institutional knowledge, hence less information about treatment effects.

Related to this point, an unconstrained optimizing administrator would not choose to place

the cutoff where they know the gain from treatment is quite large. Because RD estimates may

only provide a lower bound for the ATT, there may be RD studies of useful—i.e., effective

for treated units—programs that are simply not published because they lack statistically
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Figure 4: Example of when policy based only on the RD estimate could cause termination
of the wrong program

significant findings.

One practical variation of the environment considered here would introduce a more sub-

stantial form of uncertainty, for example, featuring learning about treatment effects, into the

administrator’s problem. Such uncertainty would pervade to the bounds obtained here, per-

haps motivating a Bayesian approach. A more formal approach could also combine bounds

for a particular treatment that had been implemented across multiple sites, to build up a

picture of the larger-population-level (as opposed to site-specific) heterogeneity. Another

variation would investigate what could be learned if the administrator only knew certain

treatment effect parameters, say, the ATT. Such variations could be worthwhile ways to

build on the basic point made in this paper: revealed preferences can provide quite a bit of

useful information about treatment effects away from the cutoff in regression-discontinuity

designs.
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Appendix

A Allow the Probability of Enrollment to Vary by x

If the ρω are no longer assumed to be uniform within intended treatment group, we adapt

eq. (10) to obtain the administrator’s problem:

max
κ̃

 κ̃∫
0

ρ0(x)(∆(x)− χ)dx)

+

 1∫
κ̃

ρ1(x)(∆(x)− χ)dx)

 .

Note that a necessary condition for κ∗ being optimal is (ρ1(κ∗)− ρ0(κ∗))∆(κ∗) = (ρ1(κ∗)−
ρ0(κ∗))χ⇒ ∆(κ∗) = χ, which is identical to Condition 1(i) for the sharp design. Optimality

of κ∗ further implies:

1∫
κ∗

ρ1(x)∆(x)dx ≥
1∫

κ∗

ρ1(x)χdx = ρ1χ(1− κ∗)⇒

1∫
κ∗
ρ1(x)∆(x)dx

1− κ∗︸ ︷︷ ︸
ITT

≥ ρ1χ = ρ1∆(κ∗), (12)

where ρ1 ≡
∫ 1
κ∗ ρ1(x)dx

1−κ∗ is the average attendance probability among the intended treated and

the second equality follows because χ = ∆(κ∗). Equation eq. (12) shows that if the average

attendance probability among the intended treated (ρ1) were known then the RD estimate of

the treatment effect could be used to provide a lower bound for the mean effect of intending

to treat among the (intended) treated (ITT).

We can also bound the mean effect of intending to not treat the untreated (ITUT) by

considering the second part of the sufficient conditions for this case, i.e., adapting eq. (4):

κ∗∫
0

ρ0(x)∆(x)dx <

κ∗∫
0

ρ0(x)χdx = ρ0χκ
∗ ⇒

κ∗∫
0

ρ0(x)∆(x)dx

κ∗︸ ︷︷ ︸
ITUT

< ρ0χ = ρ0∆(κ∗), (13)

where ρ0 ≡
∫ κ∗
0 ρ0(x)dx

κ∗
is the average attendance probability among the intended untreated

and, as with the ITT above, the second equality follows because χ = ∆(κ∗). Analogous to

the case for the ITT, eq. (13) shows that if the average attendance probability among the

intended untreated is known then the RD estimate of the treatment effect could be used to

provide an upper bound for the mean effect of intending to not treat among the (intended)

untreated (ITUT).
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B Treatment Effect Uncertainty

Suppose the administrator is uncertain about the average treatment effect ∆(x) but has

observed ∆̌(x), an unbiased signal of ∆(x). Let ∆̌(x) = ∆(x) + εi, where ε is distributed

independently of x, denote the administrator’s noisy signal of the average treatment effect

for students with index x. Because the administrator has unbiased beliefs about ∆(x) at

every point x, it must be the case that E [εi] = 0. The administrator chooses a cutoff to

maximize her expected objective:

max
κ̃

E

β
 1∫

κ̃

∆̌(x)dx

− c (1− κ̃)

⇔ max
κ̃

β E

 1∫
κ̃

(∆(x) + ε)dx

−c (1− κ̃)

⇔ max
κ̃

β

 1∫
κ̃

∆(x)dx

+ β E [ε]−c (1− κ̃)

⇔ max
κ̃

β

 1∫
κ̃

∆(x)dx

− c (1− κ̃) . (14)

The first equivalence follows from the fact that the measure of students treated (1− κ̃) is

known because it is chosen by the administrator. The second follows from the independence

assumption and the third from unbiasedness. The last expression is the administrator’s orig-

inal problem, eq. (2). Therefore, the analysis of this case is identical. Intuitively, uncertainty

does not affect the administrator’s problem because it is linear in the amount gained.

We can also use this setup to examine what would happen if the administrator instead

only had access to a biased measure of ∆(·). Define δ(x) ≡ E [εi|x], i.e., the conditional

expectation of ε given x. In the case of an unbiased ∆̌(x) we have δ(x) = 0 for all x. I

consider two types of biased beliefs.

Constant Bias First suppose δ(x) = δ 6= 0, i.e., ε is biased, but mean independent of x.

In this case, Condition 1 would not be affected, as the optimal cutoff κ∗ would not change

from the unbiased case. Intuitively, if δ(·) does not depend on x the bias does not affect the

administrator’s objective at the intensive margin.

Condition 2, however would be affected. Consider first the augmented participation

condition:
1∫

κ∗

∆(x)dx ≥ (χ− δ)(1− κ∗),

which implies the ATT lower bound would be shifted downwards by the constant amount δ.
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Similarly, the non-extension condition would become

κ∗∫
κ̂

∆(x)dx < χ(κ∗ − κ̂) = (χ− δ)(1− κ∗),

i.e., the upper bound on the ATUT would also be shifted down by the constant δ. These

changes to Condition 2 would propagate to the other bounds results.

Differential Bias in x Now let δ(x) be variable in x. The augmented participation

condition becomes
1∫

κ∗

∆(x)dx ≥ χ(1− κ∗)−
1∫

κ∗

δ(x)dx

and the augmented non-extension condition becomes

κ∗∫
κ̂

∆(x)dx < χ(κ∗ − κ̂)−
κ∗∫
κ̂

δ(x)dx.

Consider the following two cases: (i) E [δ(x)|x ∈ [κ̂, κ∗)] < 0 < E [δ(x)|x ≥ κ∗], ∀κ̂ ∈
[0, κ∗) and (ii) E [δ(x)|x ≥ κ∗] < 0 < E [δ(x)|x ∈ [κ̂, κ∗)], ∀κ̂ ∈ [0, κ∗). In case (i) the

augmented participation and non-extension conditions would reduce the lower bound on the

ATT and increase the upper bound on the ATUT. That is, all bounds would be looser. In

case (ii) the opposite would happen, i.e., bounds would tighten.

C Omitted Proofs from Section 3.2

Corollary 3a. Suppose κ∗ = 1 − µ solves eq. (2̄). The following ATUT bounds can be

obtained:

(i) There is an informative upper bound, of ATUTUB = [∆(κ∗)κ∗a + ∆(κ∗−κ∗a)]/κ∗, if and

only if κ∗a is known.

(ii) There is an informative lower bound, of ATUTLB = κ∗a∆/κ
∗, if and only if κ∗a is known

and ∆ < 0.

Proof. (i) Upper bound: By Proposition 2 the upper bound for the total treatment effect over

[0, κ∗a] is χκ∗a; if χ is unknown then apply Condition 1a to form the upper bound ∆(κ∗)κ∗a.

The administrator would have chosen to treat students x ∈ [κ∗a, κ
∗], meaning there would

be no informative upper bound, resulting in an upper bound of ∆(κ∗ − κ∗a) for the total
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treatment effect. Sum these and divide by the measure of untreated students to obtain

ATUTUB = [∆(κ∗)κ∗a + ∆(κ∗ − κ∗a)]/κ∗.
(ii) Lower bound: As in the unconstrained problem, the interval below κ∗a has an unin-

formative lower bound. Adapting the first part of Condition 2 for the interval [κ∗a, κ
∗], we

obtain χ(κ∗−κ∗a) <
∫ κ∗
κ∗a

∆(x)dx; if χ is unknown then by using the reasoning in Corollary 2a,

0 <
∫ κ∗
κ∗a

∆(x)dx. Sum over these intervals and divide by the measure of untreated students

to obtain ATUTLB = κ∗a∆/κ
∗.

For either upper or lower bound, if κ∗a was unknown then one would have to adopt the

worst-case scenario corresponding to the loosest bounds, setting κ∗a = 0 for the upper bound

and κ∗a = κ∗ for the lower bound, resulting in uninformative bounds.

Corollary 3b. Suppose κ∗ = κ∗
b

solves eq. (2̄). The following ATUT bounds can be obtained:

(i) There is an informative upper bound, which is tighter if κ∗a is known. If κ∗a is unknown

the upper bound is ATUTUB = [∆(κ∗)(κ∗− (1−µ)) + ∆(1−µ)]/κ∗; if κ∗a is known the

upper bound is ATUTUB = [∆(κ∗)(κ∗ − ((1− µ)− κ∗a)) + ∆((1− µ)− κ∗a)]/κ∗.

(ii) There is an informative lower bound, which is tighter if κ∗a is known. If κ∗a is unknown

the lower bound is ATUTLB = [∆(κ∗)(κ∗− (1− µ)) + ∆(1− µ)]/κ∗; if κ∗a is known the

lower bound is ATUTLB = [∆(κ∗)(κ∗ − κ∗a) + ∆κ∗a]/κ
∗.

Proof. (i) Upper bound: Note that eq. (4b) implies that
∫ κ∗

1−µ ∆(x)dx < ∆(κ∗)(κ∗− (1−µ)).

By Assumption 1(iii), the average treatment effect for any treated unit cannot exceed ∆,

which if κ∗a is not known is the upper bound for the average treatment effect for x ∈ [0, 1−µ].

This results in an upper bound of ATUTUB = [∆(κ∗)(κ∗ − (1 − µ)) + ∆(1 − µ)]/κ∗. If κ∗a

is known, then
∫ κ∗a

0
∆(x)dx < ∆(κ∗)κ∗a by eq. (4), which results in a tighter upper bound of

ATUTUB = [∆(κ∗)(κ∗ − ((1− µ)− κ∗a)) + ∆((1− µ)− κ∗a)]/κ∗.
(ii) Lower bound: Suppose that κ∗a is known. Use the same argument as for the lower

bound in Corollary 3a, but also include the interval [1−µ, κ∗], which has a total lower bound

of ∆(κ∗−(1−µ)), and note that in Case b we have ∆(κ∗) = χ. This would result in a ATUT

lower bound [∆(κ∗)((1 − µ) − κ∗a) + ∆(κ∗a + (κ∗ − (1 − µ)))]/κ∗. However, this expression

does not exploit the fact that we are in a Case-b-binding constrained scenario. By adapting

Condition 2 to take as the upper limit κ∗ (instead of 1), this latter piece of information

implies that
∫ κ∗
κ∗a

∆(x)dx ≥ χ(κ∗ − κ∗a) = ∆(κ∗)(κ∗ − κ∗a); intuitively, the unconstrained

administrator would have treated x ∈ [κ∗a, κ
∗]. Using (only) this information, the ATUT

lower bound would be [∆(κ∗)(κ∗− κ∗a) + ∆κ∗a]/κ
∗. Taking the maximum (i.e., tightest lower

bound) results in ATUTLB = [∆(κ∗)(κ∗ − κ∗a) + ∆κ∗a]/κ
∗. If κ∗a is not known, then we must
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choose κ∗a to minimize the lower bound, i.e., κ∗a = (1 − µ), which would result in a looser

bound of ATUTLB = [∆(κ∗)(κ∗ − (1− µ)) + ∆(1− µ)]/κ∗.

Corollary 4a. Suppose κ∗ = 1−µ solves eq. (2̄). The following ATE bounds can be obtained.

(i) If ∆ < 0 and κ∗a is unknown then there is an informative lower bound, of ATELB = ∆κ∗,

which is tightened to ATELB = ∆κ∗a if κ∗a is known.

(ii) There is an informative upper bound, of ATEUB = ∆(κ∗)κ∗a + ∆(1− κ∗a), if and only if

κ∗a is known.

Proof. (i) Lower bound: If κ∗a is unknown, by Corollary 2a, the lower bound on the ATE

for units with x ≥ κ∗ is 0, tightening the ATE lower bound from ∆ to ∆κ∗. If κ∗a is known,

then by Corollary 3a(ii) the lower bound on for units x ∈ [κ∗a, κ
∗] is 0, further tightening the

ATE lower bound to ∆κ∗a.

(ii) Upper bound: If κ∗a is known, then by Corollary 3a(i) the upper bound on the total

gain for the untreated is ∆(κ∗)κ∗a + ∆(κ∗ − κ∗a), reducing the ATE upper bound from ∆ to

∆(κ∗)κ∗a + ∆(1− κ∗a).

Corollary 4b. Suppose κ∗ = κ∗
b

solves eq. (2̄). The following ATE bounds can be obtained.

(i) If κ∗a is unknown there is an informative lower bound, of ATELB = ∆(κ∗)(1 − (1 −
µ)) + ∆(1− µ), which is tightened to ATELB = ∆(κ∗)(1− κ∗a) + ∆κ∗a, if κ∗a is known.

(ii) If κ∗a is unknown there is an informative upper bound, of ATEUB = ∆(κ∗)(κ∗ − (1 −
µ)) + ∆(1 − (κ∗ − (1 − µ))), which is tightened to ATEUB = ∆(κ∗)(κ∗ − ((1 − µ) −
κ∗a)) + ∆(1− (κ∗ − ((1− µ)− κ∗a))) if κ∗a is known.

Proof. For each bound, first assume κ∗a is not known.

(i) Lower bound: Measure κ∗ units are untreated, and Corollary 3b(ii) shows that the

ATUT is no smaller than untreated of [∆(κ∗)(κ∗−(1−µ))+∆(1−µ)]/κ∗. Analogously, 1−κ∗

units are treated, and eq. (3b) implies that the ATT is no smaller than ∆(κ∗). Integrate and

sum the two parts to form ATELB = ∆(κ∗)(1− (1− µ)) + ∆(1− µ). If κ∗a is known, we can

use the tighter lower bound on the ATUT from Corollary 3b(ii), resulting in a tighter lower

bound of ATELB = ∆(κ∗)(1− κ∗a) + ∆κ∗a.

(ii) Upper bound: Use the expression for the upper bound of ATUT from Corollary

3b(i) and the fact that the upper bound on the treated students, with x ∈ [κ∗, 1], is ∆

(by Assumption 1(iii)), to integrate and sum to form ATEUB = ∆(κ∗)(κ∗ − (1 − µ)) +

∆(1 − (κ∗ − (1 − µ))). If κ∗a is known, then, similar to Corollary 3b(i), we can shift the

measure κ∗a from having an upper bound of ∆ to ∆(κ∗), resulting in a tighter upper bound

of ATEUB = ∆(κ∗)(κ∗ − ((1− µ)− κ∗a)) + ∆(1− (κ∗ − ((1− µ)− κ∗a))).
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D Weighted Objective

The administrator’s original problem (2) was utilitarian, i.e., it weighed gains for all students

equally. The most natural alternative to the unweighted objective would be a redistributive

policy, which assigned people with lower running variable indices larger weights. For example,

if x measured quantiles of incoming human capital, then putting more weight on gains for

students with lower indices allows the administrator to place additional value on students’

becoming proficient. In this case, we can adapt equation eq. (2) to allow the administrator

to weigh gains for students depending on their index x by using weights φ(x), where φ′ ≤ 0:

max
κ̃

 1∫
κ̃

φ(x)∆(x)dx

− χ (1− κ̃) , (2̂)

and proceed with the analysis.

Condition 1̂ (Necessity). For problem (2̂), the following necessary conditions must hold for

κ∗:

(i) Marginal Benefit=Marginal Cost: φ(κ∗)∆(κ∗) = χ

(ii) Increasing Marginal Benefit: ∆′(κ∗) ≥ 0.

Proof. Differentiate the administrator’s problem (2̂) with respect to κ̃ to obtain (i). Note

that if the derivative is negative at a candidate solution satisfying (i), the administrator

would gain by not treating students just above κ∗, thereby obtaining (ii). The inequality is

strict if φ′ < 0.

Condition 2̂ (Sufficiency). The fact the program was implemented implies that the total

gain from treating those units was at least as large as the total costs, i.e.:

Participation:

1∫
κ∗

φ(x)∆(x)dx ≥ χ(1− κ∗). (3̂)

The fact the program was not extended to κ̂ < κ∗ implies that treating these units would be

sub-optimal, i.e.:
κ∗∫
κ̂

φ(x)∆(x)dx < χ(κ∗ − κ̂). (4̂)
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Proposition 1 remains true when φ′ ≤ 0. To see this, divide eq. (3̂) by the measure of

treated students and combine with Condition 1̂(i) to obtain
(∫ 1

κ∗
φ(x)∆(x)dx

)
/ (1− κ∗) ≥

φ(κ∗)∆(κ∗). Because φ′ ≤ 0, this implies that
(∫ 1

κ∗
∆(x)dx

)
/ (1− κ∗) ≥ ∆(κ∗), where

the inequality is strict if φ′ < 0. Intuitively, the gains for treating the treated must be

even larger than the LATE if the administrator values such gains less. Analogous reasoning

applied to Corollary 3 shows that the ATUT is bounded above by the LATE when φ′ ≤ 0,

and that this bound is strict when φ′ < 0. Therefore, the corollaries, in particular Corollary

4 bounding the ATE, also still obtain with the weighted problem eq. (2̂). In summary, all

of the bounds from the unweighted problem, including Corollary 4, which bounds the ATE,

are also obtained for the weighted problem (2̂).

E Variable Marginal Cost of Treatment

Begin by relaxing Assumption 1(i), replacing it with

Assumption 1′. (i) The cost function c(·) is known and is non-negative, strictly increas-

ing, and differentiable. The marginal cost function c′(·) is monotonic.

Note that Assumption 1′(i) still implies that the marginal cost of providing treatment

is strictly positive. The second part of Assumption 1′(i) relaxes the constant marginal cost

assumption. Note that the cost can be variable in µ, but does not vary stochastically or

directly with respect to x. However, it is possible to indirectly to pick up variation in costs

with respect to x by using a reduced-form cost function crf(µ) in place of c(µ). Suppose the

marginal cost was composed of two components and also took as an argument x: c′both(µ, x) =

c′(µ) + cx(x), where c′(µ) represented the marginal cost of the cost function in Assumption

1′ and cx(·) was monotonic in x. For example, suppose the first component was constant,

i.e., c′(µ) = χ. Then, if cx(·) is a constant χx the reduced-form marginal cost function

c′rf(µ) = χ + χx would also be constant. However, if cx(·) is strictly increasing (decreasing)

in x then the reduced-form total cost function would be crf(µ) =
∫ 1

1−µ (c′(x) + cx(x)) dx,

which depends on the order in which students are treated. Then, the reduced form, c′rf(µ),

would be strictly decreasing (increasing), because students are added by extending the cutoff

downward from 1. Indeed, an increasing cx(·) could potentially transform an increasing

marginal cost to a constant or even decreasing reduced-form marginal cost function, which

would then be the one used in the analysis.

I first adapt the conditions characterizing κ∗, in terms of ∆(·) and qualitative features

of the (potentially reduced-form) cost function c(·). Specifically, I consider three cases for

Assumption 1′(i): where the marginal cost is constant, decreasing, and increasing; these
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correspond to linear, concave, and convex cost functions, respectively. I then provide results

bounding treatment effect parameters of interest.

Condition 1′ (Necessity). The following necessary conditions must hold for κ∗:

(i) Marginal Benefit=Marginal Cost: ∆(κ∗) = c′(1 − κ∗) for any cost function c(·) satis-

fying Assumption 1′

(ii) Increasing Marginal Benefit: ∆′(κ∗) ≥ 0 if the marginal cost is constant or decreasing;

this inequality is strict if the marginal cost is decreasing.

Proof. Differentiate the administrator’s problem (2) with respect to κ̃ to obtain (i). Note

that if the derivative is negative at a candidate solution satisfying (i) but the marginal cost is

nonincreasing, the administrator would gain by not treating students just above κ∗, thereby

obtaining (ii).

Condition 1′ is similar to Condition 1, except that Condition 1′(ii) has a strict inequality if

the marginal cost of treatment is decreasing. As before, to guarantee uniqueness, inspection

of eq. (2) implies two additional conditions sufficient for characterizing κ∗. These conditions

are identical to those in Condition 2, the only difference being that χ no longer enters either

expression.

Condition 2′ (Sufficiency). The fact the program was implemented implies that the total

gain from treating those units was at least as large as the total costs, i.e.:

Participation:

1∫
κ∗

∆(x)dx ≥ c(1− κ∗). (3′)

The fact the program was not extended to κ̂ < κ∗ implies that treating these units would be

sub-optimal, i.e.:
κ∗∫
κ̂

∆(x)dx < c(1− κ̂)− c(1− κ∗). (4′)

As before, a corollary immediately follows.

Corollary 1′. The following are globally true about ∆(·) if the marginal cost of treatment is

nonincreasing:

(i) ∆(·) cannot be constant.
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(ii) ∆(·) is not globally monotonically decreasing in x.

Proof. Identical to proof of Corollary 1.

As before, I next examine what can be deduced about averages of treatment effects for

subsets of students.

Corollary 2′. The ATT is positive for any cost function c(·) satisfying Assumption 1′.

Proof. The left side of eq. (3′) in Condition 2′ is the total effect of treatment on the treated,

i.e., (
∫ 1

κ∗
∆(x)

(1−κ∗)
dx) (1− κ∗). Because the marginal cost of treatment is positive (Assumption

1′(i)), eq. (3′) implies that
1∫

κ∗

∆(x)dx ≥ c(1− κ∗) > 0.

Divide through by (1− κ∗) to obtain the result:

1∫
κ∗

∆(x)

(1− κ∗)
dx

︸ ︷︷ ︸
ATT

≥ c(1− κ∗)
(1− κ∗)︸ ︷︷ ︸

avg. cost of treating treated

> 0.

Although Corollary 2′ provides a lower bound for the average effect of treatment on the

treated, there is no informative (i.e., lower than ∆) upper bound. Corollary 2′ makes no

further assumptions about the shape of the cost function. However, if the marginal cost of

treating students is nonincreasing, the lower bound on the average effect of treatment on the

treated increases.

Proposition 1′. If the marginal cost of treatment is nonincreasing, the ATT is bounded

below by the LATE at the treatment cutoff.

Proof. If the marginal cost of treatment is nonincreasing then c′(1 − κ∗) ≤ c(1−κ∗)
1−κ∗ , i.e.,

the marginal cost of treatment for 1 − κ∗ is no greater than the average cost of providing

treatment for treated students. Insert this inequality into eq. (3′) and combine with this

with Condition 1′(i) to obtain

1∫
κ∗

∆(x)dx

1− κ∗︸ ︷︷ ︸
ATT

≥ c(1− κ∗)
1− κ∗

≥ c′(1− κ∗) = ∆(κ∗)︸ ︷︷ ︸
LATE at κ∗

.
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As with Proposition 1, Proposition 1′ shows that, if the marginal cost of treatment is

nonincreasing, the discontinuity-based estimate provides a lower bound for the average effect

of treatment on the treated. One should note that only qualitative information about the

shape, not the level, of the marginal cost of treatment is all that is required for this result.

Although Corollary 1′(ii) rules out an average treatment effect that is decreasing every-

where (if the marginal cost of treatment is nonincreasing), it could be the case that ∆(·) is

decreasing for some x < κ∗.46 Therefore, as before, it is useful to bound averages of ∆(·)
itself for strict subsets of untreated students.

Proposition 2′. There exists an informative upper bound for
b∫
a

∆(x)dx for 0 ≤ a < b ≤ κ∗

if ∆ > c(1−a)−c(1−κ∗)−∆(b−a)
κ∗−b .

Proof. Suppose we would like to characterize ∆(·) for values less than x̂ < κ∗. Let µ̂ be the

measure of students under consideration and split eq. (4′) into two parts at x̂ and rearrange

terms:

x̂∫
x̂−µ̂

∆(x)dx < c(1−(x̂−µ̂))−c(1−κ∗)−
κ∗∫
x̂

∆(x)dx⇒
x̂∫

x̂−µ̂

∆(x)dx < c(1−(x̂−µ̂))−c(1−κ∗)−∆ (κ∗ − x̂) ,

(5′)

where the implication follows from Assumption 1(iii).47

Setting the measure of students to whom the treatment is extended equal to κ∗ provides

the following result about the ATUT.

Corollary 3′. The ATUT has an informative upper bound. If the marginal cost of treatment

is nonincreasing, this upper bound is the LATE at the treatment cutoff.

Proof. Let x̂ = µ̂ = κ∗ in eq. (5′) and divide through by κ∗ to obtain the first result:

κ∗∫
0

∆(x)

κ∗
dx

︸ ︷︷ ︸
ATUT

<
c(1)− c(1− κ∗)

κ∗︸ ︷︷ ︸
>0,<∞

, (8′)

46Note that Corollary 1′(ii) would also obtain when the marginal cost of treatment was strictly increasing,
if the administrator could choose which side of the cutoff to treat.

47As with Proposition 2, this bound will be informative for all but very low values of ∆. This condition is
satisfied when using Proposition 2′ to bound the ATUT or ATE if the average cost of treating the untreated
is less than ∆.
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where the right hand side is positive from Assumption 1′(i). For the second result, note that

a nonincreasing marginal cost implies

c(1)− c(1− κ∗)
κ∗

< c′(1− κ∗) = ∆(κ∗)︸ ︷︷ ︸
LATE at κ∗

,

where the equality follows from Proposition 1′(i).

Analogously to the upper bound for the ATT, although Corollary 3′ bounds the average

of treatment effects for all untreated students, there is no informative (i.e., greater than ∆)

lower bound.

To summarize, optimality of κ∗ implies a lower bound on the ATT and an upper bound

on the ATUT. If the marginal cost of treatment is constant or decreasing then it must be the

case that ATUT < ∆(κ∗) ≤ ATT. Though the ATT and ATUT are respectively bounded

below and above by the cutoff LATE when marginal costs are nonincreasing, the LATE does

not bound these moments when the marginal cost of treatment is strictly increasing.

E.1 Bounding the ATE

This section studies the interplay between qualitative features of the cost of treatment and

inferences about treatment effects, by comparing three cases: constant, decreasing, and

increasing marginal cost of treatment, where each marginal cost curve passes through the

point (κ∗,∆(κ∗)). A decreasing marginal cost (c′′ < 0) might result from economies of scale,

while an increasing marginal cost (c′′ > 0) might result from congestion effects, say if it

becomes increasingly difficult to find a good fit for the program.

To begin, suppose the cost function is c(µ) = µχ. Then, as was shown in Section

3.1, the ATE lower bound is ATELB = ∆κ∗ + χ(1 − κ∗) and the ATE upper bound is

ATEUB = χκ∗ + ∆(1 − κ∗), because χ = ∆(κ∗) by Condition 1(i). Figure 5 builds on the

example in Figure 1 to provide intuition for how the marginal cost of treatment bounds

the ATE. Start with the solid red line representing a constant marginal cost of treatment,

and rotate the cost function counterclockwise about the point (κ∗,∆(κ∗)) to represent a

decreasing marginal cost of treatment (long-dashed red line).48 This rotation implies the

ATT must be higher than the case corresponding to the constant marginal cost in order to

satisfy eq. (3′). Analogously, the maximum ATUT must be lower when marginal costs are

decreasing; were they the same as with constant marginal costs, the administrator might

gain from extending treatment to untreated units given that they now have a lower cost of

being treated, violating eq. (4′). The opposite holds true for when we rotate the cost curve

48Recall that this line is decreasing in x because the treatment is being extended from x = 1 downwards.
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clockwise about the point (κ∗,∆(κ∗)), to reflect an increasing marginal cost of treatment

(dot-dashed red line). Table 6 summarizes these results, showing that when the marginal

cost of treatment is decreasing, bounds on the population ATE are tighter than they would

be with a constant marginal cost, while when marginal cost is increasing, bounds on the

population ATE are looser.
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Index x

κ∗

∆(x)
c′′(·) = 0
c′′(·) < 0
c′′(·) > 0
κ∗

Figure 5: Example with different cost functions

ATE bounds

Marginal cost Lower Upper

Const. (c′′ = 0) =ATELB = ATEUB

Dec. (c′′ < 0) > ATELB < ATEUB

Inc. (c′′ > 0) < ATELB > ATEUB

Table 6: Summary of bounds on population ATE
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