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Abstract

This paper develops and estimates an equilibrium model of charter school entry,

school input choices, and student school choices. The structural model renders a com-

prehensive and internally consistent picture of treatment effects when there may be

general equilibrium effects of school competition. Simulations indicate that the mean

effect of charter schools on attendant students is positive and varies widely across loca-

tions. The mean spillover effect on public school students is small but positive. Lifting

caps on charter schools would more than double entry but reduce gains for attendant

students.
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1 INTRODUCTION

The provision of school choice is often proposed as a way to improve educational outcomes

for students in poorly performing public schools. Charter schools are at the center of the

recent debate concerning education policy reforms, such as President Obama’s Race to the

Top, which rewards states that lift legislative caps on the number of charter schools; such

caps are present in most states with charter schools (White, 2009).2 Policymakers would

like to know how student achievement has been affected by existing charter schools and

how it would be affected if they expanded the role of charter schools in public education.

Advocates argue that charter schools improve the performance of students attending charters

(“direct effect”) and students attending competing public schools (“spillover effect”). Critics

of charter schools argue that they “cream-skim”—that is, the better outcomes at charter

schools represent student selection, not test score gains—and that charter schools negatively

affect students attending competing public schools.

The need to understand how charter schools affect student achievement has motivated a

large body of empirical work. Some of this work uses lottery designs, which estimate direct

treatment effects using oversubscribed schools (Hoxby and Rockoff, 2005; Angrist et al.,

2012); other work estimates value-added models of test score growth using panel data on

students who switch between public and charter schools (Bettinger, 2005; Bifulco and Ladd,

2006; Sass, 2006; Hanushek et al., 2007). Bifulco and Ladd (2006), Sass (2006), Chakrabarti

(2008), and Imberman (2011) use a variety of methods to estimate spillover effects of school

choice. Estimates of direct and spillover effects are widely mixed across studies, which is

consistent with Gleason et al. (2010), who find substantial heterogeneity in charter school

impacts on attendant students.

Prior research highlights the heterogeneity of charter school effects on student achieve-

ment but cannot provide a comprehensive evaluation of how charter school policy affects

student achievement for several reasons. First, policymakers interested in the effect of lift-

ing caps on the number of charter schools need a way to extrapolate findings from studies

of existing charter schools to new charter schools serving different populations of students.

Second, prior studies do not model why charter schools open in certain places but not in

others (Hanushek et al., 2007). Understanding where new charter schools would open and

2Though charter schools are publicly funded and, therefore, technically a type of public school, for brevity
I typically refer to them as “charter schools” and to traditional public schools as “public schools.” Like public
schools, charter schools cannot selectively admit students. They typically have considerably more autonomy
than public schools regarding personnel decisions, curricula, school hours, and pedagogical methods, and
often have lower per-pupil resources due to a lack of separate capital funding streams. All students have
access to a public school but not all students have access to a charter school because charter schools enter
certain areas and not others.

2



their effects in these areas is crucial to the debate about lifting charter school caps. Third,

increasingly popular lottery-based designs cannot quantify the effect of all existing charter

schools on student achievement because they do not provide a way to extrapolate results

from oversubscribed charter schools to those that are not oversubscribed. The potential for

bias could be large if oversubscribed charter schools are also those that households believe

will deliver stronger benefits. Fourth, although several authors have quantified spillover ef-

fects, none have provided a coherent framework that uses estimates of bias from spillovers

to adjust estimated direct effects of school choice (e.g., Cullen et al., 2006). This could be

important if a charter school improved outcomes for all students but students remaining

at the public school benefited more than did those attending the charter, in which case a

lottery-based design would find a negative direct effect.

This paper develops and estimates an equilibrium model of competition between charter

and public schools to confront these issues. It does so by modeling three key components

of the school choice debate: student school choices, charter and public school inputs, and

charter school entry decisions. The model incorporates selection on student ability in two

ways: charter school entry decisions take into account market-level ability distributions and,

within markets, student sorting is a function of heterogeneous student ability and inputs

at both charter and public schools. Modeling student school choices as a function of both

student and school characteristics allows for generalization of estimates based on existing

charter schools to charter schools that might enter in new markets were caps lifted, even in the

presence of student sorting on unobserved ability. The model of school input choices allows

charter schools to have heterogeneous treatment effects across markets through variation

in input provision and also predicts what inputs for public schools would have been in the

absence of charters, which is necessary to properly quantify spillover effects. The equilibrium

framework provides an internally consistent method to quantify both spillover effects and

the bias introduced when one ignores equilibrium responses by public schools, unifying the

two strands of the literature where authors either estimate the direct effect of charter schools

or use different students and schools to estimate spillover effects on public school students.

By modeling charter school entry it is possible to quantify how many more charter schools

would open and in which markets they would open were caps lifted, which is important if

the effects of charter schools are heterogeneous across markets. This paper also estimates

the extent to which peer ability affects student achievement at public and charter schools,

meaning that the model allows for spillovers through changes in both student ability and

public school input choices.

The model is estimated using maximum likelihood on administrative data from the North

Carolina public school system. The data contain the universe of schools and students in the
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North Carolina public school system from 1998 to 2001 and include variables that enable

estimation of the model’s demand and supply sides, such as public and charter school loca-

tions, charter school entry decisions, and detailed per-pupil school resources, which enter the

model as a per-pupil capital index. The school attended, typical weekly hours of homework

reported done, and standardized test scores are recorded for each student in each year. The

data also contain student locations, which enter the model through a distance cost of attend-

ing a school, shifting the probability a student will attend a charter school. Student-level

distance data are aggregated into market-level distance distributions, which affect ability

sorting and provide variation to identify peer effects.

Average weekly hours of homework done by students at a school constitutes the measure

of effort, the endogenous school input to test score production. Effort has an intuitive appeal

as an input choice and average time spent doing homework is a natural candidate for the

effort input for several reasons. First, learning course material takes time so the use of time

spent doing homework is firmly grounded in economic theory. Second, time-use data are

commonly used in the economics of education, as in Stinebrickner and Stinebrickner (2008)

and Ferreyra and Liang (2012), who use time spent on studying and homework, respectively,

as measures of student effort. These studies focus on how much students work, which relates

to the notion of effort used in this paper because schools may face a cost of getting students

to work some desired amount and students may face a cost of working for the amount of time

desired by their school. Third, Stinebrickner and Stinebrickner (2004) show that time-use

reports of own study time vary considerably even within a semester. The existence of noise,

which may in part be due to transient shocks in reported homework, supports averaging

student homework levels at the school-year level to measure how much they work.

The estimated model fits the data well and provides a natural framework to answer

several questions crucial to informing charter school policy. The estimated mean direct effect

of charter schools on attendant students is 11% of a standard deviation (sd) in test scores and

there is a positive, though small, mean spillover effect of 2% sd on public school students in

duopoly markets. These effects are driven by charter schools’ more effective technology, the

relative unresponsiveness of public school effort to charter schools, and a lack of strong mean

sorting on student ability. Having observed their superior technology, one might consider a

policy forcing charter schools to serve all students in markets they enter. However, this policy

would reduce the number of charter schools and, because charters drastically reduce effort

when forced to serve many more students, would also dramatically reduce average gains in

student achievement. There is substantial between-market heterogeneity in the mean direct

effect; in particular, the direct effect of a charter school is positively related to demand for it,

which should caution policymakers seeking to generalize results from lottery-based studies
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based on oversubscribed charter schools. Finally, more than twice as many charter schools

would enter if caps were lifted, though the larger average market size and lower average

per-pupil capital in new entry markets greatly diminishes their estimated direct effects.

This paper complements the literature modeling competition between public and private

schools (Epple and Romano, 1998; Nechyba, 2000; Caucutt, 2002; Ferreyra, 2007). While

this literature improves our understanding of student school choices, peer effects, and the

effects of private school vouchers, public schools are assumed to be monolithic and do not

make input choices, precluding effort-based spillover effects of school choice.3 In a related

literature, Epple and Sieg (1999), Sieg et al. (2004), and Bayer et al. (2004, 2007) study

equilibrium sorting across school districts and municipalities to understand housing markets

and local public good provision (see Kuminoff et al., 2013 for a recent review). Such sorting

could generate variation in public school capital levels—this paper takes such sorting, and

therefore, public school resources, as given, instead focusing on entry and competition. Other

work studies sorting for different types of schools, such as Epple et al. (2006), Fu (2014),

and Kapor (2015), which estimate equilibrium models of the higher education market.

This paper is closest to Ferreyra and Kosenok (2015), which develops and estimates a

model of charter school location and input decisions in Washington DC. As with the literature

modeling competition between public and private schools, in their model public schools do

not choose inputs. Instead, public schools follow reduced-form policy rules, precluding their

framework from producing endogenous spillover effects operating through changes in input

choices. Also relevant is Walters (2014), which uses lotteries to estimate a flexible model of

household demand for charter schools, using these estimates to quantify treatment effects

for students attending new charter schools. In contrast to the current paper, Walters models

application behavior but does not model school input choices or charter school location

decisions and does not allow for peer effects in the production technology.

There are also many papers studying either parts of this problem or related problems.

Altonji et al. (2015) develop an econometric framework to quantify the extent to which

private school voucher programs cream-skim from public schools, and find a small, but

negative, effect on the performance of students remaining at the public school. Glomm et al.

(2005) describe determinants of charter school location decisions. McMillan (2004) develops

a theoretical model where a public school may reduce its provision of costly effort in response

to competition from a private school. The current paper naturally complements this work

by quantifying spillovers stemming from charter school competition. Hastings et al. (2009),

Agarwal and Somaini (2015), and Calsamiglia et al. (2016) use households’ stated preferences

over schools to estimate household demand. The latter two papers study a context in which

3See Neilson (2013) for a more recent example.
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households submit school rankings to a centralized school assignment mechanism; related to

these papers is De Haan et al. (2015), which compares household survey data with rankings

households submitted to a centralized mechanism. The current paper instead uses revealed

preferences to estimate demand, while making progress towards understanding charter school

entry and school input determination.

2 MODEL

2.1 Overview An economy in the model is one market and time period. Each economy

contains one traditional public school, one potential charter school entrant, and a continuum

of households, each with one student. The potential charter school entrant makes an entry

decision, after which the public school and charter school—if it has entered—choose effort

inputs to test score production.4 Households, which differ by student ability and location

within the market, choose the school that maximizes their utility. All households are assigned

to the public school if the charter school did not enter. In equilibrium, the charter school

makes the optimal entry decision based on its expected equilibrium value of entry, neither

school wishes to change its effort level, and no household wishes to switch schools.

Denote the public school tps (for “traditional public school”) and the potential charter

school entrant ch. Schools and students are indexed by s and i, respectively. Market and

time subscripts are suppressed in this section to simplify exposition. Variables in bold denote

the pair of variables for both schools, e.g., k = (ktps, kch).

2.2 Students There is a continuum of students of measure µ. A student i ∈ I has ability ai,

where ai ∼ F (ai) with density f(ai). Student i maximizes utility by choosing a school si ∈ Si,
their school choice set. If there is a charter school in student i’s market then Si = {tps, ch},
otherwise Si = {tps}. Student (ex-post) choice-specific utility is uis = yis − cis + ηis, where

yis is i’s test score at school s, cis is i’s non-pecuniary cost of attending school s, and

ηis ∼ N
(
0, σ2

η

)
is a choice-specific preference shock.5

The test score depends on student ability, peer quality—defined as the mean ability of

students at the school—ās, school effort es and capital ks, and a productivity shock νyis,

4Charter school “entry” corresponds to either new entry or continued operation within a market. This
distinction is irrelevant in the current section but matters for estimation and simulation.

5Charter and public schools cannot charge tuition.

6



which is realized after students choose schools:6

(1) yis = aiωsā
θs
s

(
αse

βs
s + (1− αs)kβss

)τs/βs
+ νyis = Eys(ai, ās, es, ks) + νyis,

where ωs is Hicks-neutral total factor productivity (TFP) and νyis ∼ i.i.d.N (0, σ2
νy). Each

production function has a constant elasticity of substitution (CES) between capital and ef-

fort. Similar to Hoxby (2002), who models charter and public schools as having different

production functions, the CES parameters are allowed to differ between charter and public

schools. The motivation for allowing the CES parameters to differ is that charter schools are

typically organized and run differently from traditional public schools (Dobbie and Fryer Jr.,

2013); well-documented differences include hiring different types of teachers (Hoxby, 2002;

Podgursky, 2006) and having teachers who employ innovative instructional strategies (Car-

ruthers, 2012). This paper models the potential for such innovation by allowing—but not

forcing—charter and public schools to have different production functions.

Student i’s cost of attending school s depends on school effort, distance from the student

to the school, ris, a fixed cost of attending the charter school, cch, and an ability-specific cost

of attending the charter school cch,a, according to cis = cees + crris + (cch + aicch,a) 1{s =

ch}.7 The choice to allow for non-pecuniary costs of attending charter schools is based on

the observation that charters often have lower levels of amenities, such as gymnasiums or

playgrounds. Valuation of these amenities may depend on student ability, hence the ability-

specific charter school cost cch,a.

The optimal school choice policy for student i in a duopoly market is

(2) s∗i = arg max
s∈Si

{Eνy
i

[uis]} = arg max
s∈Si

{Eys(ai, ās, es, ks)− cis + ηis},

where νyi = (νyi,tps, ν
y
i,ch) is the pair of test score productivity shocks for i.

6Some authors in this literature include student covariates, such as race, in the test score outcome
equation (Angrist et al., 2012) or student utility (Ferreyra and Kosenok, 2015). This paper effectively includes
such covariates in student-specific ability. Note that mean peer covariates are consequently subsumed by
the mean ability of students at the school. The assumption that, within a location, households care more
about peer ability than race has empirical support. Fischer (2003) finds that racial sorting into location is
twice as strong as income-based sorting; income likely affects ability through the provision of costly inputs.
Therefore, there may be more within-location variation in ability than in race.

7None of the parameters ce, cr, cch, or cch,a are assumed to be “costs” in the estimation of the model
in the sense that their signs are unrestricted. For example, effort may be costly for households because
spending time doing homework (or spending time getting one’s kids to do their homework) imbues effort
with an opportunity cost. On the other hand, if effort produces components of human capital that are valued
by households but not reflected in standardized achievement tests, then households may have negative effort
costs because effort serves as a stand-in for an unmeasured outcome desired by households.
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2.3 Schools Each market is endowed with a public school and a potential charter school

entrant. Each school is endowed with a capital level and location within the market, all of

which are known to the potential charter school entrant before it makes its entry decision,

denoted z ∈ {no entry, entry}.
The school’s objective is a weighted average of the average test score of students at the

school ȳs, school size µs, and cost function cs:

(3) vs = δysȳs + µs − cs = δysāsEys(1, ās, es, ks) + µs − cs.

Student responses to school choices determine both ȳs (through mean ability ās) and µs

(details in Appendix A.1). If the average test score did not directly enter the school’s

objective function (δys = 0), the model would predict that monopoly public schools would

exert no effort because they would draw all students in their market without incurring any

effort cost. The inclusion of school size µs helps capture administrators’ incentives; e.g., a

principal might be fired for poor management if very few students attend their school.

The school’s cost function allows for interactions between effort and capital, school size,

and mean student ability:

(4) cs = ψes1es + ψes2esµs + ψes3esks + ψes4esās − (ψmkt.sizeµ+ ψfr.BlackµBlack) 1{s = ch},

where ψmkt.size is the charter school’s valuation of market size µ, ψfr.Black is the charter school’s

valuation of being in a market with a share of Black students µBlack. The inclusion of an

interaction term between effort and mean ability ψes4 allows the school’s cost of getting

students to spend the desired amount of time doing homework to depend on mean student

ability. For example, more work may need to be assigned to have high-ability students spend

a certain amount of time doing homework. Though schools are risk-neutral, a potential

preference for larger markets ψmkt.size allows charter schools to target larger markets to make

sure they have enough students. The last term ψfr.Black allows the model to capture the fact

that charter schools may want to serve Black students, which may explicitly be part of their

mission statements (Bifulco and Ladd, 2007).

If there is a charter school in the market each school has a policy

(5) e∗s = arg max
es

Eνe [vs(e)] = arg max
es

Eνe [vs (es, e−s)],

i.e., each school chooses its own effort es to maximize its expected objective, given the action

of the other school e−s and distribution of effort productivity shocks νe = (νetps, ν
e
ch), which
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is realized after schools choose effort. Each shock νes determines observed effort according to

(6) eos = esν
e
s ,

where ln νes ∼ i.i.d.N (0, σ2
νe).

Students in monopoly markets have no school choice so the average ability for students

attending the monopoly public school is the market average ā and the measure of students

attending is the market size µ, returning the monopolist objective vmonotps = δy,tpsȳtps+µ−ctps.
The monopolist public school has a policy

(7) emono ∗tps = arg max
etps

Eνetps

[
vmonotps (etps)

]
.

The charter school’s optimal entry decision is

(8) z∗ = entry ⇔ Eνe [vch(e
∗)] ≥ v,

where e∗ is the pair of equilibrium effort levels chosen by both schools and v is a random

variable known to the charter school, which denotes an exogenous fixed cost of entry and/or

operating.

2.4 Equilibrium The solution concept is subgame perfect Nash equilibrium, so the model
is solved by backwards-induction.

A Subgame Perfect Nash Equilibrium for the period game is an entry decision and student
and school decisions such that

a: the charter school enters (z∗ = entry) if and only if the entry cost shock is less than
its expected payoff in the entry subgame (eq. (8)),

b: if the charter school enters, the ensuing subgame equilibrium is the Entry Subgame
Equilibrium, and

c: if the charter school does not enter, the ensuing subgame equilibrium is the Monopoly
Subgame Equilibrium.

An Entry Subgame Equilibrium consists of charter and public school effort choices, real-
ized school effort, household school choices, and mean school abilities such that
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b.i : each school’s chosen effort e∗s maximizes the expected objective of the school, given
the other school’s chosen effort (eq. (5)),

b.ii : realized school effort for each school eos is chosen effort multiplied by the effort
productivity shock (eq. (6)),

b.iii : student school choices s∗i maximize utility given realized school effort (eq. (2)), and
b.iv : the pair of mean abilities at both schools a = (atps, ach) is consistent with realized

school effort and student optimization (eq. (26) in Appendix A.1).

A Monopoly Subgame Equilibrium consists of a chosen public school effort, realized public
school effort, household school choices, and mean public school ability such that

c.i : the public school’s chosen effort emono ∗tps solves the monopolist public school’s problem
(eq. (7)),

c.ii : realized public school effort emono otps is the monopolist’s chosen effort multiplied by
its effort productivity shock (eq. (6)),

c.iii : all students attend the public school (s∗i = tps, ∀i ∈ I), and
c.iv : mean ability at the public school is market mean ability (āmonotps = ā).

I solve for the equilibrium value of entry by first deriving student school choices as a

function of school effort, their own ability, and their distance to charter and public schools.

I then find a Nash equilibrium in chosen charter and public school effort by iterating best

responses, which requires computation of a fixed point in mean student abilities at charter

and public schools within every iteration. Equilibrium effort levels are then hit with pro-

ductivity shocks, after which they enter household school choice problems. The model is

solved numerically (details in Appendix A.1).8 I have proved existence of an equilibrium

and though I have not proven there is a unique equilibrium, an extensive search has never

found more than one equilibrium effort pair in the entry subgame (see Appendices B.1-B.2).

The model generates rich interactions between charter and public schools, which capture

key parts of the debate on school choice and are key to evaluating charter school policy.

Charter school entry decisions depend on market characteristics, such as student ability and

locations and school capital. The model inherently produces heterogeneous treatment effects

of charter schools so it can be used to extrapolate findings to markets charter schools have

not yet entered. The model can generate direct and spillover effects of either sign. If the

charter school is much more productive than the public school, high-ability students may

attend it with very high probability, which will be smaller the further it is from students.

Depending on market characteristics and parameter values, a public school may not find

8The model is solved using an approximate version of the schools’ problems where schools do not integrate
over νe, reducing computing time by around a factor of a million. I have used numerical integration to verify
that this does not substantially change effort choices.
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it advantageous to try to retain high-ability students but may instead decrease equilibrium

effort from the monopoly level.

3 DATA

Model parameters are estimated using administrative data from North Carolina. The data

are taken from the universe of public and charter schools and were provided by the North

Carolina Education Research Data Center (NCERDC). The data contain variables neces-

sary to estimate student-level test score production functions using school-level inputs, and

include detailed panels on teachers, students, and charter and traditional public schools in

the North Carolina public school system. For teachers, the data contain years of experience

and the school in which they work. For students, the data contain demographic character-

istics, which school they attend, grade in school, standardized reading and math test scores

for students in grades 3-8 and grade 10, self-reported weekly hours of homework done, and

student household locations. School-level data are used to calculate computers per pupil and

district per-pupil revenues.9

Because solving the model requires knowing school capital levels for public and charter

schools in all markets, including those without charter schools, I develop an algorithm linking

per-pupil expenditures at public schools to capital at both public and charter schools. This

algorithm essentially scales down per-pupil expenditures, an intuitive measure of school

capital, at public schools to a level consistent with the lower levels observed at charter

schools. Solving the model also requires an algorithm computing distance distributions for

all markets. The average and median student in most markets is closer to the public school

but there is also substantial variation in distance distributions across markets. In particular,

there are markets where the majority of students are closer to the charter school. Further

details about the capital and distance data can be found in Appendix B.3.

The test score in the model is the average of the reading and math test scores and is

normalized to have a mean of 3 and standard deviation of 1 for each grade to make it

comparable across grades. The average test score is 3 to ensure that all markets have ability

distributions with positive means; otherwise, the model would predict that effort for any

school in such a market would be zero if effort was costly for schools.10

Effort is computed using self-reported data on the hours of homework students say they

typically do per week, which are then averaged to create a school-wide effort variable per

year (details in Appendix B.3). It may be useful to think of the school as having the ability

9Charter schools are considered to be their own school districts in North Carolina.
10The estimation sample has a mean test score of 3.05 and standard deviation of 0.95, as some observations

are lost while making sample restrictions.
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to enforce students to do a certain amount of homework per week, but enforcement requires

effort from the teachers or principal and is therefore costly. That is, school effort costs

broadly capture how hard it is for schools to get their students to work a certain amount.11

As discussed previously, the ability-effort interaction coefficient in school cost functions ψes4

allows this cost to depend on student ability.

There is empirical support for this treatment of effort. First, Stinebrickner and Stine-

brickner (2004) show that student self-reports of homework time can be very noisy, which

means that averaging student homework levels may help capture effort differences between

schools. It is important to note that effort levels do not simply capture between-student

variation potentially caused by sorting: almost half of within-student variation in students’

own homework levels in the data is explained by changes in the school attended. Another

concern is that time spent doing homework may be a problematic measure of effort if higher

“effort” were actually a signal of lower ability or if more time spent on homework were a sig-

nal of lower inputs elsewhere in school. In either case, increases in effort should be negatively

related to academic achievement because it acts as a signal for a lower level of some other

input. Regressions of student test scores on prior scores and school capital and effort levels

return positive partial correlation coefficients for effort at both charter and public schools,

mitigating this potential concern.

Both capital and effort are assumed to be the same for all students at the same school.

The assumption is innocuous for capital, because most school capital is applied fairly evenly

to students within schools.12 Even if it were not, data on within-school capital expenditures

are not available. In contrast, effort choices for individual students are observed. Assuming

that there is only one effort level per school per year means I can avoid solving for students’

individual effort choices and has the additional benefit of averaging out the measurement

error likely contained in individual effort reports.

3.1 Markets Each student’s school choice set must be defined to solve and estimate the

model. A market in the model is similar to the catchment area for a traditional public

school. In reality, markets partition North Carolina, though these markets do not necessarily

correspond to public school attendance zones. To make the model solution independent

across markets, charter schools may compete with at most one public school, and each public

11De Fraja et al. (2010) include homework assigned as a measure of school effort in their study of the
relationship between child, parent, and school effort, while Ferreyra and Liang (2012) use time spent doing
homework as a measure of student effort. Fruehwirth (2014) also considers student-chosen effort. The model
here can be thought of as a school choosing an assigned amount of homework, targeting how much time
students at the school will take to complete the homework, which is the input to the production function.

12Special education and gifted and talented student programs are notable exceptions. Charter schools
tend to have much smaller fractions of both types of students.
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school may compete with at most one charter school. Each charter school is designated to be

in the market of the public school closest in distance, within the same public school district.

The assumption that each public school competes with one charter school is supported by

the data. In the four instances when the same public school is the closest public school to

more than one charter school, I designate the charter school closest to the public school as

its competitor and exclude the other charter schools from the sample. Private schools are

not part of school choice sets.13

There are two main advantages to structuring markets this way. First, limiting the

extent of competition allows me to model policy-relevant interactions between charter and

public schools. Solving this model is infeasible without some restriction on competition

between charter and public schools: If charter schools could draw students from multiple

public schools all public schools would then indirectly compete with each other, clearly an

intractable scenario. Other models of school choice focus on distinct metropolitan areas

that are much smaller than an entire state (e.g., Ferreyra and Kosenok, 2015). Because the

current paper considers the entire state of North Carolina, it is natural to not allow every

school to compete with every other school in the state.

Second, a geographic rule provides a simple mechanism to create each student’s school

choice set and assigns potential charter school entrants to competing public schools even in

their absence, which is essential to model entry (Appendix B.7). Such a rule is necessary

because charter schools do not have geographic cut-offs for attendance, meaning one cannot

always surmise which public school a student would have attended had he not chosen the

charter school, nor which charter school could have been attended by a student observed

in a public school. For example, elementary “feeder” schools sending students to both

public and charter middle schools cannot be used to define markets because they cannot

define markets in areas without charter schools. Appendix B.6 contains further discussion

of market definitions.

3.2 Estimation Sample The estimation sample consists of middle schools (grades 6-8) from

1998-2001. Elementary, middle, and high schools may have different test score production

functions, meaning it makes sense to focus on one school level; the model is estimated

using only middle schools for several reasons: middle school provides a natural decision-

point for students as most students switch schools between grades 5 and 6, the data contain

standardized test scores for all middle school grade levels but only a limited number of

13Private schools in North Carolina seem to target different students than charter schools. The share
of Black students at charter schools in the estimation sample is 25%, while the share of Black students
in private schools in the state was 7% in 2010. Source: Author’s calculations from NCES (2010), http:
//nces.ed.gov/surveys/pss/privateschoolsearch/.
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elementary or high school grades, and magnet schools, which have more open enrollment

schemes than traditional public schools, are less pervasive at the middle school level: about

80% of students attending magnet schools are not in the grades 6-8 in the years 1999-

2001. The estimation sample spans 1998, the first year charter schools were allowed in

North Carolina, through 2001, as the statewide cap of 100 charter schools appeared close to

binding in 2002.14 Estimating model parameters on data before the cap was binding obviates

modeling the interdependence of charter school entry decisions that would be induced by the

cap, meaning the same model can also be used to simulate entry decisions in the absence

of caps. I called the North Carolina Department of Public Instruction to inquire about

potentially oversubscribed charter schools, so that I could explore the feasibility of comparing

my results to lottery-based studies, but because such data were not available such schools

are treated as non-oversubscribed.15

The estimation sample contains markets that were stable over the sample period, stu-

dents whose school choices were consistent with their market assignments, students observed

for at least two years, and a random sub-sample of students from markets where charter

schools were never observed during the sample period.16 The estimation sample includes

78,294 public school student observations in markets without charter schools, 63,216 public

school student observations in markets with charter schools, 1,984 total public-school-years,

and 4,911 charter school student observations in 128 charter-school-years. Due to a potential

concern that excluding students may affect parameter estimates, I re-estimated the model

excluding markets where more than 5% of students were observed crossing market bound-

aries; estimates of parameters and treatment effects remain substantially unchanged (results

in Appendix B.7).

3.3 Descriptive Statistics Table 1 shows moments of the marginal distributions of market-

level means and standard deviations of test scores in 1997 (i.e., the year before any charter

schools entered). The first row presents moments of the distribution of market-level means,

and shows that there is considerable spread in mean prior test scores between markets; the

75th percentile highest mean test score is about 15% higher than the 25th percentile mean

test score, and the highest is over three times the lowest. The second row presents moments

of the distribution of market-level standard deviations and shows that not only do test scores

14Additionally, data from 1997 are used to identify market ability distributions; see Section 4 for details.
15In conversations with staff at about one third of the charter schools open at some point during 1998-2001,

I learned that schools are often uncertain even about whether they had waiting lists.
16This last restriction was adopted to ease computation of the likelihood. I sample 100% of students in

markets with at most 100 students, 20% of students in markets with 101-200 students, 15% of students in
markets with 201-300 students, 10% of students in markets with 301-400 students, and 5% of students in
markets with more than 400 students.
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vary quite a bit within markets, but there is also considerable heterogeneity in within-market

variation of prior test scores. Of course, prior test scores do not directly measure student

ability; rather, they are a combination of public school inputs and productivity shocks.

Nonetheless, these data suggest that there may be substantial heterogeneity between markets

in the distribution of student ability.

Table 1: Distribution of Market-Level Means and Standard Deviations of 1997 Test Scores

Minimum 25th %ile Median Mean 75th %ile Maximum
Mean 1.322 2.790 2.988 2.985 3.195 3.972
St. dev. 0.152 0.815 0.859 0.859 0.912 1.162

Entry: Charter schools operate in 6% of markets.17 Table 2 shows that duopoly markets

tend to be larger (first column), markets in which charter schools would have higher capital

(second column), and markets with lower prior mean test scores (third column).

Table 2: Fraction of Markets with Charter Schools by Market Characteristics

Market Size µ Charter Capital kch Mean 1997 Test Score y1997

Above-median 0.067 0.095 0.050
Below-median 0.045 0.017 0.062

School inputs: On average, charter schools have about three-quarters of the per-pupil

capital levels of public schools (0.43 for charter schools, versus 0.54 and 0.56 for monopolist

and competitor public schools, respectively). Table 3 describes how mean school effort varies

by market characteristics. The first column presents effort for charter schools, the second

column presents effort for competing public schools (i.e., those in duopoly markets), and the

third column presents effort for monopolist public schools; the first row presents the mean

over all markets, the second and third rows present mean effort by market size, and the fourth

and fifth rows present mean effort by capital level. Mean effort is higher in markets with

charter schools (2.66 and 2.69 hours, respectively, for charter and public schools in duopoly

markets, versus 2.43 hours for monopoly public schools). In contrast to their public school

competitors, charter schools exert lower effort in larger markets. However, both charter and

competing public schools exert more effort in high-capital markets; while this is also true for

monopolist public schools, the difference is much smaller.

Student outcomes: The first column of Table 4 shows that students in charter schools have

the highest average test scores, followed by students in public schools in duopoly markets,

followed by students in public schools in markets without charters. The second column of

17Statistics pool data over all years in the estimation sample unless otherwise specified.
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Table 3: Mean Effort (Hours of Homework) by School Type and Market Characteristics

Duopoly Markets Monopoly Markets
Charter Public Public

Total 2.66 2.69 2.43
Above-median µ 2.51 2.85 2.49
Below-median µ 2.89 2.46 2.37
Above-median ks 2.74 2.78 2.51
Below-median ks 2.20 2.21 2.35

Table 4 shows that, on average, charter schools comprise only 9.2% of students in duopoly

markets, i.e., charter schools are much smaller than their public school counterparts.

Together, the above facts highlight the need for a framework that can accommodate both

within- and between-market heterogeneity. The model allows students to sort into schools

based on their unobserved ability and, given the substantial between-market heterogeneity,

we would naturally expect ability sorting patterns to differ across markets. Although ability

is unobserved, eq. (1) shows that prior test scores may provide initial evidence about po-

tential ability sorting. This evidence is easiest to interpret when using data from 1998—the

last year before charter schools were allowed to enter, and, therefore, the last year before

any ability-based sorting into schools. Therefore, I used a random coefficient model to de-

compose prior (i.e., from 1997) test scores of students in markets in which charter schools

entered in 1998, based on market and whether those students attended the charter school

that year, i.e., si,1998,m = ch:

(9) yi,1997,m = λ0 + λm + γ01{si,1998,m = ch}+ γm1{si,1998,m = ch}+ ιi,1997,m,

where the λ0 and λm capture overall and market-specific mean test scores, respectively, γ0

represents average sorting on prior test score into charter schools, and γm are market-specific

deviations from this average sorting, which have a mean of zero and standard deviation σγm .18

Table 5 shows that there is (weak) evidence of negative average prior-test-score sorting into

charter schools (i.e., γ0 < 0, with a p-value of 0.584). It also shows that there is substantial

between-market variation in this sorting (i.e., σγm > 0, where we reject the hypothesis that

σγm = 0 with a p-value of 0.017); indeed, the standard deviation of market-specific charter

school coefficients is more than four times bigger than the average charter-school coefficient

across all markets.

18Note that all 1997 test scores pertain to public school students because no charters had yet opened; the
tps index is omitted to simplify exposition, as it is redundant.
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To help understand this heterogeneity in sorting patterns, I now describe how sorting

into charter schools based on prior achievement varies with respect to relative school inputs,

effort and capital. This investigation is motivated by the model’s implication that, ceteris

paribus, ability sorting into a particular school should be stronger the higher its effort and

capital are relative to its competitor.19 Specifically, for each market with a charter school in

1998, I compute the mean prior test score for students attending the charter school in 1998

(i.e., y{i:si,1998,m=ch},1997,m), and public school in 1998 (i.e., y{i:si,1998,m=tps},1997,m). I then exam-

ine how the ratio of the mean 1997 test score for students attending the charter school in 1998

over that mean for students attending the public school in 1998, y{i:si,1998,m=ch},1997,m/y{i:si,1998,m=tps},1997,m,

differs by whether the charter school in that market has an above-median level of effort and

capital inputs, relative to its public school competitor. The first column of Table 6 shows

that markets in which charter schools have above-median relative effort exhibit much stronger

sorting of high-prior-score students into charter schools; the second column shows that this

is also true for capital, though to a lesser extent. That is, Table 6 shows that variation in

the relative inputs of charter and public schools can help explain patterns of heterogeneous

sorting; relative input levels explain more than 50% of the variation in sorting into charters

based on prior scores.

In summary, on average, charter schools have input levels that are no higher than those

at public schools yet they also have higher test scores. This suggests that charter and public

schools have different production functions. At the same time, there seems to be substantial

variation in between-market distributions of prior scores and, hence, potentially student

abilities and in the pattern of (potentially, ability-based) sorting between charter and public

schools between markets.

Table 4: Sample Means of Test Scores and Market Share

Duopoly Markets Test Scores ys Market Share µs/µ
Charter 3.137 0.092
Public 3.075 0.908

Monopoly Markets
Public 3.028 1.000

19This may not be true if households had very high effort costs. However, as is shown in Section 5, effort
“costs” are actually estimated to be negative.
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Table 5: Decomposition of 1997 Test Score

Intercepts Estimate Std. Error
Mean (λ0) 3.300 0.104
Std. Dev (σλm) 0.401 0.077

Random Coefficients
Mean (γ0) -0.130 0.238
Std. Dev (σγm) 0.560 0.239
Notes: 4530 observations
See eq. (9) for parameter definitions.

Table 6: Sorting on 1997 Test Scores by Ratio of
Input Levels

Effort Capital
(ech/etps) (kch/ktps)

Above-median ratio 1.12 0.98
Below-median ratio 0.71 0.87

4 ESTIMATION

The model is estimated using maximum likelihood. The game is played in every market

m ∈ 1, . . . ,M and period t ∈ 1, . . . , T . In every game there is a new public school and

potential charter school entrant, each endowed with per-pupil capital levels and locations,

and a new measure of students endowed with abilities and locations. Observed outcomes for

each market and period include charter school entry/operating decisions, school effort levels,

student school choices, and student test scores. A market is linked across periods through

its time-invariant ability distribution and whether a charter entered in the previous period

in the market, which determines the entry/operating cost shock distribution.

It is necessary to recover unobserved market-level ability distributions to solve and esti-

mate the model. Ability is assumed to be normally distributed within markets, meaning it

suffices to recover its mean and variance.20 If students can choose between schools in a mar-

ket, sorting on unobserved ability may complicate recovery of market ability distributions.

By using test score distributions from 1997, the year before charter school authorization,

there is no such selection problem because all students attended public schools in their re-

spective markets that period. The recovered ability distributions can then be treated as

observed when integrating over student ability in school maximization problems and student

likelihood statements. Because they are functions of the public school test score production

function parameters, market ability distributions must be recovered jointly with the esti-

mation of the model. Effectively, student achievement depends on prior test scores via the

recovered ability distributions.

Using the production function for public schools (1), the mean test score for market m

20Market ability distributions are non-parametrically identified given the public school test score produc-
tion function and test score productivity shock distribution. Details are available upon request.
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in 1997 is

ytps,97,m =

∫
aEytps(1, am, e

o
tps,97,m, ktps,97,m)fm(a)da+

∫
fνy(ν

y
tps)dν

y
tps︸ ︷︷ ︸

0

= Eytps(1, am, e
o
tps,97,m, ktps,97,m)

∫
afm(a)da = a1+θtps

m Eytps(1, 1, e
o
tps,97,m, ktps,97,m)(10)

where (eotps,97,m, ktps,97,m) are observed inputs, fm is the density of ability in market m, and

am is mean ability. The normalization of public school TFP ωtps = 1 affects the mean of

recovered ability distributions; the charter school’s TFP ωch can be thought of as productivity

relative to that of a public school. The second moment can be used to recover the variance

of ability for each market using the recovered am and analogous reasoning.21

Let Φ and φ denote the standard normal CDF and density, respectively. The potential

charter school entrant enters with probability

(11) Pr{zotm = entry|zot−1,m} = Φ

(
Eνe

[
vch(e

∗
tm)
]
−µv,zot−1,m

σv,zot−1,m

)
,

where e∗tm is equilibrium effort and µv,zot−1,m
and σv,zot−1,m

depend on last period’s charter

school entry decision zot−1,m.22 The likelihood of observed effort at school s is the density

of the difference between effort predicted by the model e∗stm, which depends on the entry

decision, and observed effort:

(12) L{eostm|zotm} =
1

σνe
φ

(
ln eostm − ln e∗stm

σνe

)
.

The probability student i attends the charter school (soitm = ch) is a function of ability

21The variance of the ability distribution cannot be separated from that of the test score shock, so σνy is
set to 0.40. For market-level ability distributions to be feasible, σνy was chosen in order to not create any
markets with a negative variance of student ability or degenerate ability distribution (the smallest market-
level standard deviation of prior test score is 0.405). The chosen value of the standard deviation of the test
score shock has the added benefit of targeting a key value in the literature – the residual in Cunha et al.
(2010) accounts for about 34% of the variation in outcomes, while σνy = 0.40 implies that the “analogous”
residual accounts for about 22% of the variation of outcomes here. A much larger value would render the
ability distribution in at least one market to be either degenerate or infeasible. Note that both the shock
variance as well as the assumption of equal variances for shocks at public and charter schools may play less
of a role than they typically would. This is because households maximize ex-ante expected utility and the
test score shock enters in an additively separable manner, meaning the variance of the test score shock does
not affect their optimal decisions. That is, though the level of σνy affects recovered ability distributions it
does not affect household decisions given ability.

22Recall again that “entry” means either new entry or continued operation. Note that µv,zot−1,m
should

not be confused with µ and µs in the model, which denote measures of students. There was no entry before
the first period of the model.
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ai, mean ability at both schools atm, observed school inputs (eotm,ktm), the pair of distances

from the student to both schools ritm, and own ability ai:

(13) Pr{soitm = ch|zotm = entry, ai} = Φ

(
ai∆g(atm, e

o
tm,ktm)−∆citm
σ∆ε

)
,

where eq. (20) defines ∆g and ∆citm. Because mean schools abilities are unobserved, it is

necessary to compute the fixed point of mean abilities at charter and public schools atm,

given observed effort and capital (details in Appendix A.1). The likelihood of observed test

score yoistm is

(14) L{yoistm|zotm, soitm = s, ai} =
1

σνy
φ

(
yoistm − Eys(ai, astm, eostm, kstm)

σνy

)
.

Entry cost shocks vtm, effort productivity shocks νestm, test score productivity shocks νyistm,

and preference shocks ηistm are assumed to be independent.

The total likelihood is in Appendix A.2. It combines the above school- and student-level

likelihood statements, integrating the latter according to recovered market-specific ability

distributions. Asymptotic standard errors are computed using the sum of the outer product

of the observation-level scores. Given a market’s ability distribution and prior entry status,

student and school observations are independent over time. For asymptotic analysis, let the

number of markets M go to infinity, holding constant the average number of households

within each market and number of time periods T .23

4.1 Identification of Test Score Production Functions Though the model is estimated using

maximum likelihood, it is useful to discuss how variation in distances helps to identify the test

score production functions in the presence of potential sorting on both unobserved student

ability and the unobserved mean ability of students’ peers. This section provides an overview

of the argument; Appendix B.4 develops the below argument in more detail.

Between-market variation in distance distributions and within-market variation in dis-

tances between students and schools both contribute to identification of the test score pro-

duction function. Consider a market in which the charter school is located very far from

students, relative to the public school. The public school in this market would effectively

23Data are assumed to be missing randomly. There are some charter school observations where homework
was not reported for any students, so those schools did not contribute to the effort likelihood and affected
students did not contribute to the likelihood. About 5% of observations in charter and public schools are
missing test score data, so these students also do not contribute to the test score likelihood. I integrate the
likelihood over market distance distributions for students missing location data. The assumption that these
addresses are missing at random is justified by the fact that an indicator for whether the address is missing
is not significantly associated with a student’s test score when controlling for student ethnicity.
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serve all students, implying that variation in mean achievement in this market over time

would be due to changes in capital and effort, not sorting on student ability.24 This identi-

fies the portion of the public school’s production function that does not depend on ability,

Eytps(1, 1, etps, ktps). Analogous reasoning, in markets where the charter school was closer to

students, would identify Eych(1, 1, ech, kch).

The model also allows unobserved ability to play a role in test score production, through

the parameter θs. Manski (1993) taxonomizes peer effects as endogenous (determined by

the mean achievement of attendant students), correlated (determined through a common

shock to students in the same school), and contextual (operating directly through the mean

ability of attendant students), and argues that a “reflection problem” makes it difficult

to separate these channels when using commonly invoked linear-in-means models of peer

effects. I follow other structural work studying competition between schools (such as Epple

and Romano, 1998; Nechyba, 2000; Caucutt, 2002; Ferreyra, 2007) by assuming that neither

endogenous social interactions nor correlated shocks affect test scores.25 Conditioning on the

estimated Eys(1, 1, es, ks), variation in achievement in the above “no ability sorting” markets,

combined with the fact that peer quality is a known (up to θs) function of student ability

in such markets, pins down θs. Though I allow for a relationship between distributions

of student ability and distance between markets, ability and distance are assumed to be

independently distributed within markets, as in Card (1993). This means that, though not

strictly necessary, within-market variation in net distance from the charter school also helps

estimate the importance of peer effects.

The assumption that ability and distance distributions are independent within markets

could be violated if charter schools were able to target students within markets but is justified

for several reasons. First, the model already allows charter schools to target students to a

large degree, in the sense that markets have different ability and distance distributions and

charter schools make entry decisions. Charter schools likely have less control over their

specific locations within the relatively small areas inside markets because they typically

locate in densely populated areas that have already been developed, so their optimal choice

within a market (from a purely spatial perspective) is unlikely to be available. Because they

do not receive capital funding streams, charter schools often use existing buildings to avoid

expensive capital expenditures incurred when building a new school, meaning that even if

their (spatially) optimal location within a market were available, it would unlikely trump a

low-rent option close-by within the market. Cullen et al. (2005) check the plausibility of this

24Recall that market-level ability distributions are assumed to be constant.
25Even if there were a reflection problem, the production technologies are non-linear and, therefore, in

principle both endogenous and correlated effects could also be identified.
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assumption in a similar environment by checking whether observed student characteristics

are related to distance, and do not find evidence of a linear relationship. I perform a similar

check and also find little evidence that ability and distance are related within markets.26

5 ESTIMATION RESULTS

5.1 Parameters Table 7 presents the estimated parameters for the model. The first nine

rows are the test score production function parameters.27 Both schools have effort shares

in test score production that are higher than capital shares. Capital is not estimated to be

productive at public schools—that is, the effort share at public schools is not statistically

distinguishable from one (αtps = 0.966, with a standard error of 0.116). This is consistent

with Hanushek (2003). Charter schools do not seem to be significantly different from being

homogeneous of degree one (τch = 0.953, with a standard error of 0.052). In contrast, we can

reject that public schools are homogeneous of degree one (τtps = 0.060, with a standard error

of 0.009). The elasticity of substitution between capital and effort is 0.60 for charter schools

and 0.77 for public schools; inputs are more substitutable at charter schools than at public

schools but neither school’s technology is close to Cobb-Douglas, which has an elasticity of

substitution of one. Contextual peer effects at charter schools are much less important than

those at public schools (θch = 0.026 < θtps = 0.995). The finding that peer quality is an

important determinant of achievement at public schools is consistent with Ferreyra (2007) in

the realistic scenario in which student ability is increasing in household income; comparable

estimates do not exist for charter schools. Although variance in mean ability across charter

schools does little to affect student test scores, charter schools have an estimated TFP that is

much higher than that at public schools (ωch = 1.74 > ωtps = 1). Taken together, production

functions substantially differ between charter and public schools.28

Household preference parameters are denominated in standard deviations of test scores.

Students prefer to attend public schools, ceteris paribus (cch = 15.28), and the interaction

between ability and disutility from attending charter schools is indistinguishable from zero

(cch,a = −0.36, with a standard error of 0.21). The disutility from attending charter schools

may, in part, capture enrollment caps which, in reality, limit charter school sizes.29 As

26A linear regression of net distance of a student from both charter and public schools on and market and
time indicator variables had an R2 of 0.7715 when the student test score was excluded and 0.7716 when the
student test score was included.

27Recall that all public schools share the same test score production technology and all charter schools
share (a different) test score production technology.

28A likelihood ratio test rejects a restricted model in which charter and public schools share a common
technology (except for TFP ωs) with a p-value smaller than 10−10.

29Though this parameter may seem large, it should not create significant cause for concern about how any
potential bias of estimates of household preference parameters would impact the estimated distribution of
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Table 7: Parameter Estimates

Parameter Estimate Standard error Description
Test score production functions
ωch 1.744 0.114 TFP for charter school relative to public
αch 0.627 0.049 effort share, charter school
βch -0.675 0.114 substitution parameter, charter school
αtps 0.966 0.116 effort share, public school
βtps -0.295 0.991 substitution parameter, public school
τch 0.953 0.052 return to scale, charter school
τtps 0.060 0.009 return to scale, public school
θch 0.026 0.029 peer effects, charter school
θtps 0.995 0.012 peer effects, public school

Student cost
cch 15.280 3.662 student charter school cost
cch,a -0.361 0.211 student charter school cost interact ability
ce -3.869 0.968 student effort cost
cr 0.726 0.179 student distance cost

School preference shock
ση 7.985 1.971 st. dev. student school preference shock

School valuation of test scores
δy,ch 20.960 3.748 value of average test score, charter school
δy,tps 19.634 3.483 value of average test score, public school

School effort cost functions
ψe,ch,1 0.000 7.432 disutility of effort, charter school
ψe,tps,1 1.930 0.398 disutility of effort, public school
ψe,ch,2 14.137 3.559 effort, school size interaction, charter school
ψe,tps,2 -0.071 0.021 effort, school size interaction, public school
ψe,ch,3 -15.508 5.003 effort, capital interaction, charter school
ψe,tps,3 -0.917 0.265 effort, capital interaction, public school
ψe,ch,4 7.423 1.980 effort, mean ability interaction, charter school
ψe,tps,4 0.000 0.109 effort, mean ability interaction, public school

Entry cost
µv,no entry 96.444 29.416 mean entry cost distribution, no entry last period
σv,no entry 20.169 10.529 st. dev. entry cost distribution, no entry last period
µv,entry 34.621 18.483 mean entry cost distribution, entry last period
σv,entry 14.053 17.145 st. dev. entry cost distribution, entry last period
ψmkt.size 8.580 6.491 weight for market size
ψfr.Black 23.479 14.077 weight for fraction of Black students in market

Effort productivity shocks
σνe 0.185 0.003 st. dev. effort productivity shock
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mentioned previously, data on charter school capacities and applications, which are required

to separate this cost from capacity constraints, were not available. The disutility of effort

is negative (ce = −3.87), which means households prefer attending the school where they

have to work more, even after taking into account increased test scores. The per-kilometer

distance cost is about three-quarters of a standard deviation (cr = 0.73) of test scores.

Schools are estimated to face positive costs of exerting effort. It would be hard to

rationalize interior effort level choices otherwise, given that the estimates point towards

positive marginal products of effort at both public and charter schools, and interior effort

data cannot be explained by household effort costs, which are negative (i.e., households

would like more effort, ceteris paribus). Charter schools have much larger size-effort cost

interactions than public schools (ψe,ch,2 = 14.14 > ψe,tps,2 = −0.07). The cost of exerting

effort is mitigated by capital at both school types (ψe,ch,3 = −15.51, ψe,tps,3 = −0.92). Finally,

charter schools suffer a larger effort cost for educating higher ability students (ψe,ch,4 = 7.42).

Higher per-pupil capital levels may make it easier for the school to create, assign, and grade

homework because there are more computers per student or if there are smaller class sizes.

On the other hand, designing curricula for high ability students may be more demanding.

Finally, the mean of the entry cost shock distribution is lower when there was a charter

school in the market in the previous period (µv,entry = 34.62 < µv,no entry = 94.44). Charter

schools are also more likely to enter larger markets γmkt.size = 8.58) and in markets the higher

the share of the market is Black students (γfr.Black = 23.48), though these parameters are

somewhat imprecisely estimated.

5.2 Model Fit The model captures charter school entry, charter and public school effort,

student choice, and student test score patterns for North Carolina. The model does a good

job of predicting the fraction of markets with charter schools; on average, 6% of markets

have charters, the same as in the data. Table 8 shows the fraction of markets with charter

schools, by market characteristics. It shows that the model also captures the facts that

charter schools are more likely to enter larger markets (first and second columns), markets

where they would receive higher per-pupil capital (third and fourth columns), and markets

with lower mean 1997 test scores (fifth and sixth columns).

treatment effects because the primary manner in which the model shifts demand for charter schools is through
the mean effect on random utility, cch, not the term measuring the interaction between student ability and the
non-pecuniary cost of attending charter schools, cch,a. This means that estimates of treatment effects, and
the parts of school objectives pertaining to student achievement, would be relatively unaffected by charter
school size caps. The concern about biased household preference parameters would be more salient if the
estimated interaction between student ability and the cost of attending a charter school were large, in which
case the estimated distribution of treatment effects might be biased. Appendix B.8 examines sensitivity of
treatment effects to the non-pecuniary cost cch.
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Table 8: Fit: Fraction of Markets with Charter Schools by Market Characteristics

Market Size µ Charter Capital kch Mean 1997 Test Score y1997

Observed Predicted Observed Predicted Observed Predicted
Above-median 0.067 0.080 0.095 0.080 0.050 0.056
Below-median 0.045 0.042 0.017 0.041 0.062 0.065

The model can fit school effort patterns. The top row of Table 9 shows that the model

captures the fact that charter and public schools in duopoly markets exert more effort than

monopolist public schools, though it slightly under-predicts charter school effort. Higher

effort levels in duopoly markets could be driven by both charter schools’ tendency to enter

markets with higher per-pupil capital levels and their effect on public school effort. The

rest of Table 9 shows that the model also captures the relationships between effort, market

size, and capital. As opposed to both duopoly and monopoly public schools, charter schools

have much lower predicted effort levels in larger markets (second versus third row). Char-

ter schools in markets with above-median capital (fourth row) exert more effort than those

in markets with below-median capital (fifth row). The same is true for public schools in

both duopoly and monopoly markets. Two channels underlie these patterns. First, capi-

tal directly augments test score production, increasing effort choices through capital-effort

complementarity—especially at charter schools. Second, capital reduces effort costs at both

school types via the negative interaction between capital and effort in school effort cost

functions. The latter channel helps explain why public schools exert higher effort in markets

where they have higher per-pupil capital, despite the small direct (i.e., via the production

technology) effect of capital on the achievement of public school students.

The first two columns of Table 10 show that the model captures the ranking average of

test scores in the estimation sample: students at charter schools have the highest average test

scores, followed by students attending public schools in markets charter schools have entered,

followed by students in public schools in markets without charters. The third and fourth

columns of Table 10 show model fit for the fraction of students choosing charter schools, and

show that the model also fits the pattern that charter schools are smaller than competing

public schools.

Despite the difference in mean test scores, model simulations indicate that the mean

ability of students at charter schools and public schools competing with charters is around

the same—the average of the ratio of mean abilities of public over charter school students

across markets is 0.996. However, there is also a wide range of sorting behaviors between

markets, with the lowest ratio of mean abilities implying that public school students have

only 60% of the peer quality that charter school students have and the highest value this
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Table 9: Fit: Mean Effort (Hours of Homework) by School Type and Market Characteristics

Duopoly Markets Monopoly Markets
Charter Public Public

Observed Predicted Observed Predicted Observed Predicted
Total 2.66 2.51 2.69 2.65 2.43 2.44
Above-median µ 2.51 2.37 2.85 2.76 2.49 2.52
Below-median µ 2.89 2.77 2.46 2.44 2.37 2.37
Above-median ks 2.74 2.61 2.78 2.73 2.51 2.51
Below-median ks 2.20 2.31 2.21 2.50 2.35 2.38

Table 10: Fit: Mean Test Scores and Market Share

Test Scores ys Market Share µs/µ

Duopoly Markets Observed Predicted Observed Predicted
Charter 3.137 3.122 0.092 0.082
Public 3.075 3.062 0.908 0.918

Monopoly Markets
Public 3.028 3.043 1.000 1.000

ratio obtains is 1.48, which corresponds to public school students having 48% higher peer

quality than charter school students.

Variation in both effort and capital of charter and public schools explains over 40% of the

variation in ability sorting patterns.30 The model can account for such heterogeneous sorting

via several channels. First, variation in relative school capital directly causes variation in

ability sorting through the productive effect of capital at charter schools, via their technology.

This direct effect is augmented by two indirect effects of capital that increase schools’ chosen

effort levels: via the negative interaction between school capital and effort in school effort

cost functions and the effect of these higher effort levels in school technologies. Finally,

subsequent productivity shocks to chosen effort create further between-market variation in

relative effort levels. However, without some countervailing force, ability sorting would be

too strong; the effects of variation in relative inputs is blunted by the non-pecuniary cost of

attending charter schools and the fact that charter schools are typically located further from

students than traditional public schools. Note that there is also between-market variation

in relative distance of students from charter schools, which allows for sorting to be stronger

or weaker between markets, ceteris paribus.

30Details available upon request.
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6 COUNTERFACTUAL SIMULATIONS

Charter school policy depends critically on how they affect the achievement of attendant

students, students at competing public schools, and students in markets where charter schools

would enter if caps on the total number of charters were lifted. To quantify these effects,

I simulate the model 30 times, where I first simulate charter school entry decisions and

school effort choices under duopoly and monopoly scenarios, and then simulate household

school choices and test scores for each household in the market’s charter school, public school

competitor, and monopolist public school.

6.1 Definitions of Treatment Effects The effect of being in a charter school (“direct effect”)

for student i who lives in market m is the difference between the test score the student would

have received at the charter school and that she would have received at the monopolist public

school in her market:

∆direct
im = yi,ch,m − ymonoi,tps,m

= Eych (ai, ach,m, ech,m, kch,m) + νyi,ch − Eytps
(
ai, am, e

mono
tps,m, ktps,m

)
− νyi,tps,mono,(15)

where ach,m is the mean ability of students attending the charter school, ech,m is the effort

level at the charter school, am is the average ability at the monopolist public school (equal

to mean ability in the market), emonotps,m is the effort level at the monopoly public school, and

νyis are ex-post test score productivity shocks.31 The effect of attending the public school

competitor (“spillover effect”) for student i is the difference between the test score she would

have received at the public school, when competing with the charter school, and that she

would have received at the monopolist public school in that market: ∆spill
im = yi,tps,m−ymonoi,tps,m,

where, analogous to yi,ch,m, the term yi,tps,m includes the relevant public school inputs.

The model is a useful tool for program evaluation because it provides potential outcomes

that can be used to generate both direct and spillover effects for all students, regardless

of charter school presence or student school choice. Researchers typically focus on mean

treatment effects, which are expected values of ∆direct and ∆spill for different choice-based

sets of students. Consider the treatment of attending a charter school. The mean direct

effect of treatment on the treated (direct TOT) is the mean effect of attending a charter

31The effort levels in all simulations are those chosen by schools and then hit with effort productivity
shocks. In the model section there were no market or time subscripts because the analysis was done within
one market and one time period. I drop the time subscript here to simplify exposition, but add a market
subscript to make clear comparisons across markets.
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school among students who would choose it. In market m, the mean direct TOT is

(16) ∆
direct,TOT

m = E
[
∆direct
im |sim = ch

]
=

∫
∆direct
im fm(aim;a, e, k|sim = ch)daim,

where fm(aim;a, e, k|sim = ch) is the density of ability for students choosing the charter

school in market m (see eq. (25)).32 The mean direct effect of treatment on the untreated

(TOU) in m is the mean effect of attending a charter school among students who would

choose the public school:

(17) ∆
direct,TOU

m = E
[
∆direct
im |sim = tps

]
=

∫
∆direct
im fm(aim;a, e, k|sim = tps)daim.

The mean direct average treatment effect (ATE) in m averages over all students in the

market ∆
direct,ATE

m = E
[
∆direct
im

]
=
∫

∆direct
im fm(aim)daim, where fm is the density of ability

in market m. Market mean spillover effects are calculated analogously, substituting ∆spill
im

for ∆direct
im and tps for ch for student school choices.

Market-level treatment effects are weighted by market size and entry status to aggregate

treatment effects across markets; e.g., the mean direct TOT across all duopoly markets is

(18) ∆
direct,TOT,entry

=
∑
m

1{zm = entry}µch,m∆
direct,TOT

m /
∑
m

1{zm = entry}µch,m,

where µch,m is the measure of students choosing the charter school in m. Other aggregated

treatment effects are calculated analogously.

Researchers who exploit lotteries among applicants to an over-subscribed charter school

compare test scores of applicants who were randomized into the charter school with those

of applicants randomized into the competing public school. Denote the treatment effect

estimated for student i in such a study as

(19) ∆̌direct
im = yi,ch,m − yi,tps,m = ∆direct

im −∆spill
im ,

i.e., ∆̌direct
im is the difference between the direct and spillover effects for i. Intuitively, bigger

changes in public school inputs caused by the charter school’s presence increase biases in es-

timated treatment effects in lottery studies. For example, suppose a public school drastically

changed its behavior in response to charter school entry, such that ∆spill
im > ∆direct

im > 0. In

this case, a researcher using a lottery design would incorrectly sign the direct effect. Theory

provides no a priori sign on the spillover effect, which means even the sign of this bias cannot

32All simulations use households’ distances from schools; I only suppress the dependence of f on household
distance from schools to simplify exposition.
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be determined without further structure.

6.2 Effects of Charter Schools on the Distribution of Test Scores Table 11 summarizes

mean direct and spillover effects of charter schools on test scores for different subsets of

students. It also reports the mean bias on the direct effect induced by ignoring spillover

effects. All results are reported in percentages of a standard deviation (sd) of the average of

math and reading test scores. The top panel of the table (“Duopoly markets”) reports results

for markets in which charter schools are present and the bottom panel (“Monopoly markets”)

reports what results would be in markets in which charter schools are not present. The row

within each panel indicates which subset of households is being considered: households

who would choose charters, households who would choose competing public schools, or all

households in such markets (ATE). For example, the number associated with the first column

(∆
direct

) and the row “Attend charter” in the top panel of the table is the mean direct effect

of treatment on the treated in duopoly markets, ∆
direct,TOT,entry

, i.e., the mean direct effect

for students who chose the charter school in markets where charter schools are present.

Table 11: Mean Direct and Spillover Treatment Effects by School Choice in Duopoly and
Monopoly Markets

Duopoly Markets ∆
direct

∆̌
direct

(∆direct − ∆̌direct) ∆
spill

TOT (Attend charter) 0.108 0.104 0.005 0.005
TOU (Attend public) -0.039 -0.054 0.016 0.016
ATE -0.027 -0.042 0.015 0.015

Monopoly Markets: TOU
Attend charter 0.018 0.0186 -0.001 -0.001
Attend public -0.114 -0.124 0.010 0.010
ATE -0.103 -0.111 0.009 0.009

Charter schools have positive effects on the test scores of attendant students and negligible

spillover effects on students attending public schools. The first column shows that the mean

direct effect of charter schools is highest for students who choose to attend charter schools

in duopoly markets, about 11% sd. Most of the direct effect comes from charter school

technology. The mean test score for students in duopoly markets who attend charters is

3.128; their mean score would be reduced to 3.026 when using charter school inputs and the

public school technology, but would be reduced by a much smaller amount, to 3.013, when

also using monopoly public school inputs.
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The third column shows the mean bias induced in the estimation of direct effects by

ignoring spillover effects (column 2) and the fourth column shows mean spillover effects;

note that the third and fourth columns must be equal. The average bias introduced by

ignoring spillover effects is small, on the order of 2% sd. This finding is consistent with other

work studying the spillover effects of charter schools, such as Bifulco and Ladd (2006)—who

study spillovers using similar data from North Carolina—and Sass (2006). Average treatment

effects are much closer to the estimated effects for students attending public schools because

the share of students attending charter schools is small (about 9% of duopoly markets),

resulting in a negative direct ATE.

Mean treatment effects would be smaller in monopoly markets. The mean direct TOT of

charter schools would be about 2% sd in monopoly markets and mean spillover effects are also

slightly smaller. These differences are driven mostly due to lower levels of public and charter

school inputs chosen in those markets. The average difference in effective inputs between

charter schools and monopolist public schools, i.e., Eych(1, ach, ech, kch)− Eytps(1, am, emonotps , ktps),

is 0.070 in duopoly markets, while the same difference is 0.016 in monopoly markets; this

corresponds to over a four-fold difference.

Although estimated treatment effects are a combination of state-level charter school au-

thorization laws and other institutional characteristics, market- and school-level character-

istics, student characteristics, and identification strategy, one might want to compare the

results presented here with those from lottery studies. Using a lottery design on an oversub-

scribed Massachusetts KIPP school, Angrist et al. (2012) find that applicants randomized

into charters have 36% sd higher math test scores and 12% sd higher reading test scores

than applicants randomized into competing public schools; their finding of a 24% sd increase

in the average of reading and math test scores for ∆̌
direct

is much larger than this paper’s

finding of 11% sd. Section 6.2.1 discusses this comparison in detail.

Having observed the positive mean direct effects and negligible mean spillover effects

of charter schools, policymakers may be tempted to increase the number of students in

charter schools. Indeed, holding their entry and effort at their baseline levels, making charter

schools monopolists would increase test scores by almost 30% sd—almost three times the

mean direct effect. Therefore, I next explore how making charter schools monopolists, by

assigning all students in a market and the public school’s capital to them after they have

entered, would affect student achievement. On average, charter schools would reduce effort

by more than an hour due to the large effort costs incurred when serving so many more

students. Consequently, monopolist charters would have an average direct TOT of 2% sd,

less than a fifth of the mean direct TOT in the duopoly baseline. Even restricting attention

to markets where charter schools have positive ATEs in the baseline would result in much
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smaller, or even negative, monopolist charter school ATEs. Charter schools would also enter

fewer markets when forced to serve the entire market (5%, compared with 6% under the

baseline) and would be much less likely to enter larger markets than they would under the

duopoly scenario (2%, compared with 8% under the baseline). Altogether, this exercise

shows that understanding charter school entry and input choices is crucial for policy.

6.2.1 Heterogeneity of Treatment Effects by Market Figure 1 shows how treatment effects

vary across markets by plotting mean market-level direct and spillover TOT, where circle

size represents market size. Mean market-level direct TOTs are quite heterogeneous; this

heterogeneity relates to market size. The 75th percentile mean market-level direct TOT is

10% sd while the 25th percentile is negative at -21% sd. The finding of substantial between-

market heterogeneity in the direct TOT is consistent with Gleason et al. (2010), who find

substantial between-school variation in the mean direct effects of charter schools. Moreover,

as in this paper, Gleason et al. (2010) find many charter schools with negative average direct

effects. The school-size interaction in the charter school effort cost function plays a key role

here: mean direct effects are much more likely to be positive in smaller markets (represented

by smaller circles). There is much less variation in mean spillover TOTs, which is due to the

relative ineffectiveness of public school inputs.

Figure 1: Market-Level Mean Direct TOT
vs. Spillover TOT
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Figure 2: Market-Level Mean Direct TOT by
Fraction of Students Choosing Charter School
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By design, lottery studies estimating a direct TOT using oversubscribed charter schools

likely consider charter schools that are highly demanded by households. If households value
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student achievement, such studies may only recover part of the distribution of charter school

treatment effects. Figure 2 plots the mean direct TOT for each market against the fraction

of students in that market who would choose to attend the charter school. In markets

with below-median demand (i.e., those with a below-median fraction of students who would

choose the charter school, were it to enter), the mean direct TOT is -19% sd in test scores,

compared with slightly more than 11% sd for markets with above-median demand. When

researchers study only over-subscribed, that is, highly demanded, charter schools they draw

from schools on the right side of Figure 2, which shows the difficulty in generalizing findings

from such studies.

6.3 Effect of Allowing Unlimited Charter School Entry One of the most contentious charter

school policy debates is whether caps on the number of charter schools should be lifted.

Because the model is estimated on data from years before the statewide cap came close to

binding, it can be solved for the years 2002-2005 to quantify the effect of lifting charter

school entry caps on the distribution of test scores.33

The results suggest the cap on the total number of charter schools in North Carolina was

binding. During 2002-2005, charter schools would operate in 15% of markets if caps were

lifted, up from 6% for the period 1998-2001. Figure 3 shows how entry and other key variables

would change. The overall effect of charter schools on attendant students is attenuated as

charters enter larger markets with lower levels of capital (top two panels) and subsequently

reduce effort provision (the third panel), which eventually creates a slight negative direct

TOT (-0.4% sd). Spillover TOT impacts of charter schools in new entry markets are similar

to those estimated for the first four years of charter school authorization (on average 1% sd).

A much larger share of students would be in markets where charter schools operate (21% up

from 6%). Overall, charter schools affect more students when caps are lifted but treatment

effects are attenuated.

7 CONCLUSIONS

There is a long-standing and contentious debate about the effects of charter schools and, more

generally, school choice, on student achievement because there are many moving parts that

complicate analysis. The equilibrium model developed and estimated in this paper captures

33Recall that this paper studies middle school grades. Although the 100-charter-school cap was nearly
binding in 2001, precluding new entry in 2002 for charter schools serving any grade levels, there are only
43 schools in the estimation sample operating in 2001. Also note that, in the model, charter schools make
entry decisions in each year. In this sense, the free-entry counterfactual does not restrict additional entry
to markets in which there are not charter schools. Rather, it lets the model run for additional years, during
which time the total number of entrants may exceed the cap.
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Figure 3: Model Outcomes, 1998-2005
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key mechanisms pertinent to the debate about charter school policy, such as where charter

schools choose to locate and how many would enter were entry caps lifted (by modeling which

markets they choose to enter), how charter school quality is determined (by endogenizing

charter school inputs), the potential for spillover effects on competing public schools (by

endogenizing public school inputs and allowing peer quality to enter test score production),

and the potential for cream-skimming through student sorting (by modeling how students

choose schools based on their unobserved ability). Student distances from schools provide a

source of variation for student school choices, generating credible estimates of both charter

and public school test score production technologies. The model fits patterns of charter school

entry, public and charter school input provision, student school choices, and test scores quite

well. The structure afforded by the model allows for a coherent definition and quantification

of direct and spillover treatment effects in an equilibrium framework and simulation of the

effects of changes to charter school policy, such as lifting caps on entry.

The approach developed here provides a more comprehensive picture of treatment effects

than studies based on only a subset of charter schools, such as experimental or lottery-based

designs, because there is substantial heterogeneity that such studies may not recover. Both

the direct effect and spillover effects of charter schools are on average positive for treated
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students, although the direct effect is much larger than the spillover effect. One striking

result is the heterogeneity in the mean direct effects of charter schools on attendant students

across markets. Spillover effects for students attending public schools are quite small, which

suggests that lottery-based designs may have internal validity. However, the size of direct

treatment effects strongly relates to demand for charter schools, casting doubt on the notion

that lottery designs have external validity. Caps on the total number of charter schools

are estimated to be binding and students attending charters in new entry markets would

experience lower gains.

One limitation of this paper is that the creation of markets in which only one charter

and one public school compete could bias estimates of treatment effects. I address this

concern by first providing evidence that cross-market competition does not substantially

affect charter school entry or direct or spillover effects. Moreover, I re-estimated the model,

excluding markets where more than 5% of students were observed attending charter schools

across market boundaries, and found that estimates of parameters and treatment effects

remain largely unchanged. Finally, I use the estimated model to quantify the extent to

which sample selection might affect the direct effect of charter schools on attendant students,

finding evidence that the mean direct effect would be positive, though smaller, for excluded

students and that the mean direct effect on all charter school students would change very

little were excluded students included.

The framework developed in this paper takes an important first step towards gaining

a deeper understanding of how schools compete in the public education sector and, while

quite rich, could be extended in interesting ways. For example, the intertemporal dynamics

in this paper are relatively simple and may warrant further investigation in future work.

Additionally, incorporating data measuring other school inputs, such as teacher quality,

could comprise a fruitful branch of future research.

A APPENDIX

A.1 Model Solution This section shows how to calculate school size and average test score,
given an effort level pair e = (ech, etps), which are necessary to solve for equilibrium of the
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entry subgame. A student with ability ai chooses a charter school if and only if

Eνy [yi,ch]−ci,ch + ηi,ch ≥ Eνy [yi,tps]−ci,tps + ηi,tps

⇔

ai (Eych(1, ach, ech, kch)− cch,a − Eytps(1, atps, etps, ktps))︸ ︷︷ ︸
∆g(a,e,k)

+ (ηi,ch − ηi,tps)︸ ︷︷ ︸
∆εi

≥ ce(ech − etps)︸ ︷︷ ︸
∆ce

+ cr (ri,ch − ri,tps)︸ ︷︷ ︸
∆cri

+ cch︸︷︷︸
∆cch

⇔

ai∆g(a, e, k) + ∆εi ≥ ∆ce + ∆cri + ∆cch︸ ︷︷ ︸
∆ci

,(20)

where ∆εi ∼ N (0, σ2
∆ε) and σ2

∆ε = 2σ2
η. Ability within the market is distributed according

to F (ai) = N (a, σ2
a), making the left hand side of (20) the sum of two independent normally

distributed random variables:

(21) ai∆g(a, e, k) + ∆εi ∼ N
(
a∆g(a, e, k), σ2

a∆g(a, e, k)2 + σ2
∆ε

)
.

This provides an analytical expression for the share of students attending the charter school

µr,ch, given a distance difference ∆cri:

(22) µr,ch(∆cri,a, e, k) = 1− Φ

(
∆ce + ∆cri + ∆cch − a∆g(a, e, k)√

σ2
a∆g(a, e, k)2 + σ2

∆ε

)
,

where Φ denotes the standard cumulative normal distribution.

There are ρ ∈ 1, . . . , R separate distance pairs in the market, each with a measure µρ.

The total measure of students at the charter school is the sum of the shares of students of

each distance, weighted by the measure of students in each distance bin:

(23) µch(a, e, k) =
R∑
ρ=1

µρµρ,ch(∆cρi,a, e, k).

A student with ability ai and relative charter distance cost ∆cri will choose the charter if

and only if ∆εi ≥ ∆ci − ai∆g(a, e, k), which happens with probability Φ
(
ai∆g(a,e,k)−∆ci

σ∆ε

)
.

By Bayes’ Rule, the average ability of a student attending the charter school is

(24) ar,ch(∆cri,a, e, k) =

∫
aifr(ai;a, e, k|si = ch)dai,

35



where the density of the ability of students at the charter school is

(25) fr(ai;a, e, k|si = ch) =
Φ
(
ai∆g(a,e,k)−∆ci

σ∆ε

)
f(ai)

µr,ch(∆cri,a, e, k)
.

The average ability of students attending the charter school is the weighted average of

the average abilities of attendant students from each bin:

ach =
R∑
ρ=1

µρµρ,ch(∆cri,a, e, k)aρ,ch(∆cri,a, e, k)/µch(a, e, k)(26)

atps =
R∑
ρ=1

µρµρ,tps(∆cri,a, e, k)aρ,tps(∆cri,a, e, k)/µtps(a, e, k)

where µρ,tps, µtps, aρ,tps and atps are defined analogously for public schools. The pair of

equations (26) define a fixed point for average ability at the charter and public schools given

pairs of effort e and capital k.

After solving for as, the average test score at school s is ys = asωsa
θs
s

(
αse

βs
s + (1− αs)kβss

)τs/βs
=

asEys(1, as, es, ks), which, along with µs, is substituted into school objectives when solving

for optimal school effort.

A.2 Likelihood The likelihood function combines the previous probability and likelihood
statements for markets and students, and integrates over the ability distribution in a market,
given all the data X and parameters θ:

L(θ|X) = (
∏
m∈M

∏
t∈1,...,T

Pr{zotm = entry|zot−1,m}1{z
o
tm=entry}(1− Pr{zotm = entry|zot−1,m})1{zotm=no entry}

(
∏
m∈M

∏
s∈Stm

∏
t∈T

(
L(eoch,tm|z

o
tm = entry)L(eotps,tm|zotm = entry)

)1{zotm=entry}
· L(eotps,tm|zotm = no entry)1{zotm=no entry})·

(
∏
m∈M

∫
ai∈Am

(
∏
i∈Itm

∏
t∈T

((Pr{soitm = ch|zotm = entry, ai}L(yoi,ch,tm|z
o
tm = entry, soitm = ch, ai))

1{soitm=ch}·

((1− Pr{soitm = ch|zotm = entry, ai})L(yoi,tps,tm|zotm = entry, soitm = tps, ai))
1{soitm=tps})1{zotm=entry}·

L(yoi,tps,tm|zotm = no entry, soitm = tps, ai)
1{zotm=no entry})dFm(ai)).(27)
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B FOR ONLINE PUBLICATION

B.1 Existence of Equilibrium These proofs are for the case where there are no productivity

shocks to chosen effort levels; the results also go through when there are shocks. To use

Brouwer’s Fixed Point Theorem, the pair of best-response functions must be a continuous

self-map on a compact and convex set. I prove first there is a unique best response of one

school to another, then that this best response function is continuous, and finally apply

Brouwer’s Fixed Point Theorem. As in the model, both school production functions satisfy

Inada conditions and schools have convex effort costs.

Lemma 1. The solution to the charter school’s effort choice problem e∗ch is strictly positive.

Proof. limech→0
∂vch(e)
∂ech

=∞ due to the Inada conditions on the test score production function,

because there will always be a positive measure of students attending the charter school due

to preference shocks.

Define v+
ch = max{vch, 0}. Note that v+

c is strictly quasi-concave, due to the strict con-

cavity of vch when it is above 0.

Lemma 2. The effort set E = [e, e] is compact.

Proof. Let e = 0. Given any allowable vector of parameters θ there exists eθ such that

vch(ê) < 0, ∀ê > eθ. Let e = maxθ eθ. It exists, so the set is not empty.

Lemma 3. e∗ch(etps) is continuous.

Proof. Berge’s Maximum Theorem requires a continuous objective v+
ch, and compact and

upper-hemicontinuous (UHC) constraint set. Note first that the constraint set, E, is a fixed

connected interval, so it is trivially UHC. v+
ch is continuous, so the Maximum Theorem says

the resulting correspondence which is the argmax of v+
ch is UHC. Because v+

ch is strictly

quasi-concave there is a unique argmax to v+
ch, which means that e∗ch(etps) is a continuous

function.

Analogous reasoning applies to e∗tps(ech).

Lemma 4. There exists an equilibrium to the entry subgame.

Proof. Γ (etps, ech) =
(
e∗ch(etps), e

∗
tps(ech)

)
is a continuous self map on the compact and convex

domain E2, so there exists an equilibrium by Brouwer’s Fixed Point Theorem.
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B.2 Uniqueness of Equilibrium I do not prove uniqueness of equilibrium in the entry sub-

game but can rule out multiplicity of the charter school entry decision, given a unique

equilibrium in the ensuing entry subgame.

Lemma 5. There is no multiplicity in the charter school entry decision given uniqueness of

equilibrium in the entry subgame.

Proof. The charter school only receives one shock, vm, when it considers its entry decision,

which it knows. It enters if and only if Eνe [vch,m(e∗)] ≥ vm, where Eνe [vch,m(e∗)] is known

since under the assumption of the lemma there is a unique equilibrium in chosen effort levels

of the entry subgame.

Searches for more than one equilibrium for a wide range of parameter values and have

never returned more than one equilibrium in a market. Intuitively, there will not be multiple

equilibria in the entry subgame so long as schools are not too responsive to each other, which

would satisfied if effort cost were sufficiently convex. In the presence of multiple equilibria

for the entry subgame both schools are assumed to play the same equilibrium.

B.3 Data Construction Details

B.3.1 Construction of Effort Variable Individual students were asked how much time they

spent on homework per week in an end-of-grade survey. The possible responses were:

Code Response

A No homework is ever assigned by all their teachers

B Less than one hour each week

C Between 1 and 3 hours

D More than 3 but less than 5 hours

E Between 5 and 10 hours

F More than 10 hours

G Has homework, but does not do it.

Effort is assumed to be uniformly distributed within each interval to relate the above

categorical answers to the continuous effort measure in the model. This student-level measure

of homework done is converted to a cardinal measure by taking the midpoint of each interval,

where the top category F is mapped to the maximum of 10, and category G is mapped to

0, the latter being consistent with the treatment of effort within the model (i.e., there is no

input if no homework has been done). The school-level measure is then created by averaging
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this measure over all students attending that school in that year. Substituting the expected

value of a random variable is most defensible when the random variable enters the model

linearly and the CES technologies being estimated here are unlikely to be perfectly linear.

However, defining the model input this way has the advantage that classical reporting errors

within an interval would average out.

B.3.2 Construction of Capital Variable The model requires capital levels for charter schools,

even in markets where charter schools do not exist. The most natural variable would be per-

pupil funding, which has been studied extensively in the economics of education literature

(see, e.g., Hanushek, 2003; Hoxby, 2003). However, because charter schools in North Car-

olina do not receive funding for expenditures on buildings, and other facilities, they tend to

have lower per-pupil funding than traditional public schools. Ideally, prospective per-pupil

expenditures would be available for all charter schools. In this case, if one assumed that

individual schools did not have bargaining power over inputs such as computers, books, or

teachers, the relevant per-pupil expenditure level would enter as per-pupil “capital” for char-

ter schools in the model. The problem is that these prospective per-pupil expenditures were

not in the data, as they are a somewhat complicated function of the per-pupil capital levels

of surrounding public schools. Therefore, to solve the model it is necessary to come up with

an adjustment for public school funding to apply to charter schools.

The following algorithm computes a level of capital for both charter and public schools

given information that is always observable for a market: i) Convert measures (comput-

ers/pupil, teachers/pupil, experienced teachers/pupil) to percentiles (using the same distri-

bution for both charter and public schools), ii) average these percentiles into one index for

each school, iii) regress this index on inflation-adjusted per-pupil expenditures for the public

school in each market, using separate regressions for charter and public schools,34 iv) use

the predicted value from the above regression as the capital measure for that school type in

that market.35

An advantage of using linear regressions is that they ensure that capital in the model

is an affine function of per-pupil expenditures; that is, the R2 of model capital on per-

pupil expenditures is 1 for both public and charter schools. The manner in which per-pupil

expenditures enter is consistent with linear cost functions, that is, inputs to capital are

34The use of separate regressions allows charter and public schools to face different input prices which
may be relevant, say, for hiring teachers. Details are available upon request.

35The last step obviates integrating over the errors in the cost functions when solving the charter school’s
entry problem. Also, it precludes charter schools from making entry decisions based on unobserved informa-
tion – that is, the predicted per-pupil capital levels are no different in expectation in duopoly and monopoly
markets with the same level of per-pupil expenditures. Although it is possible that such variation may play
a role in charter school entry, it is likely second order in understanding charter school entry patterns.
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perfect substitutes where a dollar more spent on computers means a dollar less spent on

some other input, such as experienced teachers. Another check for whether the capital

forecasting model makes intuitive sense is to compare this paper’s findings with those in the

literature. The structural estimation finds that capital has a very low marginal product at

traditional public schools, a finding consistent with Hanushek (2003), but has a much higher

marginal product at charter schools. One potential reason could be that charter schools can

hire teachers outside the regular teacher labor market, assign bonuses, etc.

B.3.3 Details about Distance Distributions The model accounts for within-market charter

school locations through market-level distance distributions for charter and traditional public

schools. These distance distributions do not necessarily correspond to physical locations

within markets but do take into account the fact that charter schools are often further from

students than traditional public schools.

As with capital, distance distributions are required for all markets in order to calculate the

value the charter school would expect to obtain upon entry, which then enters the expression

for probability of entry. This section first explains how distance distributions were created

and then presents descriptive statistics about distances between students and schools.

Creation of Distance Distributions: Distance distributions are created according to the

following algorithm: i) discretize the continuous distance distribution for each market, creat-

ing the vectors ~rch, ~rtps, and ~µ, ii) using markets with charter schools, regress elements of ~rch,

~rtps, and ~µ on a two-bin distribution (fraction of students within median [of that market]

distance to the public school and further than median distance to the public school, and

average the distance for within-median and beyond-median students) for public schools, iii)

use this regression to create a predicted fraction of students in each bin, iv) normalize the

elements of the predicted fraction of students in each bin to sum to one for each market; this

is the distance distribution used in the model. Further details are available upon request.

Descriptive Statistics about Distances Because the distance distributions are a bit un-

wieldy and many students do not have distance data for both charter and traditional public

schools (for example, if a student is only observed in a charter school, the home address may

never have been given to the NCERDC), Table 12 presents several moments of simulated

distance distributions. The first and second columns provide quantiles of the marginal dis-

tributions of distances of students to public and charter schools, respectively. We can see

that that marginal distribution of distance from charter schools dominates that for public

schools.

The third column shows quantiles of the net distance to public schools. By looking at the

net distance from public schools in the third column, which depends on the joint distributions
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of distance from public and charter schools, we can see that students are usually closer to

the public school. In fact, charter schools would only be closer to students about 20% of

the time. This makes sense because markets are designed around traditional public schools;

charters enter afterwards and are therefore less likely to be in the center of the population

mass.

The fourth column presents quantiles of the market-level average of the net distance of

households from the public school, while the fifth column presents quantiles of the share of

students in each market who are closer to the public school. These last two columns show

that students are typically closer to the public school in most markets. At the same time,

there is substantial variation across markets in the typical net distance of students from the

public school: there are markets in which the average student would be closer to the charter

school as well as markets in which the majority of students would be closer to the charter

school. These last columns provide variation to help identify parameters of the test score

production function.

Table 12: Moments of Simulated Distribution of Distances (km) of Students from Public
and Charter Schools

rtps rch rtps − rch rtps − rch 1{rtps < rch}
1% 0.39 0.51 -5.52 -2.06 0.44

25% 1.79 1.90 -1.46 -1.11 0.82
50% 3.98 5.23 -0.87 -0.85 0.92
75% 8.28 9.48 -0.12 -0.63 0.94
99% 31.18 31.09 2.59 0.10 0.97

B.4 Identification of Test Score Production Function This section shows how distance dis-

tributions help to achieve identification of the key parameters in the test score production

functions. Though the technology parameters are estimated using full information maximum

likelihood, I use a multi-step argument to illustrate the intuition behind how identification

is achieved when maximizing the likelihood. I set aside the test score shock because though

it does not prevent identification, it complicates the identification argument without adding

any intuition. For this argument, assume that market-level ability distributions are known;

in practice, they are recovered during estimation.

Recall that the test score for a student at school s can be written as aia
θs
smtEys (1, 1, esmt, ksmt).

This can also be written as gs(ai, asmt)hs(esmt, ksmt), i.e., separated into components based

on own and peer ability, gs(·), and based on observable school effort and capital, hs(·). Let

rm ∈ R denote the pair of distance distributions for market m, where R is the set of feasi-

ble distance distributions. Assume full support of distance distributions over R. Such full
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support assumptions are commonly invoked in such identification arguments.

Define a set of markets and time periods mch which all have distance distributions where

there is not a positive measure of students who would choose to attend the public school

because the students are all too far from it. A key to this set being nonempty is that house-

holds have a positive cost of commuting, which is consistent with the estimation results.

Analogously, let mtps define the set of markets where distance distributions are such that

there is not a positive measure of students who would choose to attend the charter school,

were it to enter.36 The full support assumption from earlier must be augmented with “dense-

ness” (or continuity of the distribution of distance distributions) assumptions which ensure

that mch,mtps are sufficiently populated (e.g., not just one market).

Consider mch first. Because all students in such markets attend the charter school, we can

write the expected test score for charter schools in such markets as gs(am, am)hs(estm, kstm),

where am is the mean of the market-level ability distribution. The two arguments in gs are the

same because there is a continuum of students in each market (as there is in the model). By

considering the same market over different time periods in which a charter school entered, we

can recover estimates of hch(ech,t,m, kch,t,m) by differencing the log of g(am, am)hs(estm, kstm)

and running market-period regressions of log mean test scores on the difference. Although

hs() are in principle non-parametrically identified, this paper adopts a relatively flexible

CES production function due to the known data demands of non-parametric identification.

Therefore, we could then run non-linear least squares to decompose ̂hch(ech,t,m, kch,t,m) into

Eys (1, 1, estm, kstm), recovering the charter school technology parameters (ωch, αch, βch, τch).

Intuitively, variation in both schools’ capital levels as well as the effort productivity shocks

create variation in school effort and capital, even when there all students within a market

attend one school. Analogously, we can use the set of markets mtps to recover the analogous

parameters for the public school.

It still remains to recover the coefficient on peer quality at charter schools, θch. As with

estimating the parameters of the CES technology, to estimate this parameter (and θtps, for

peer quality at public schools), I use full-information maximum likelihood. As before, I will

sketch the remainder of this argument because it is illustrative to talk about the intuition

behind identification. First consider how to identify θch. To estimate θch, first use the

estimates of ̂hch(ech,t,m, kch,t,m) to get estimates of ̂gch(ai, ach,t,m), using the residuals. Let

y̌i,ch,t,m = (yi,ch,t,m/ ̂hch(ech,t,m, kch,t,m) be the test score expunged of observed school inputs.

Again, consider a market and time period m, t ∈ mch, where all students attend the char-

ter school due to the distance distribution in that market that period. The mean expunged

36Though not necessary for this identification argument, in principle mtps could be augmented with
markets in those years where there is no observed charter school entry.
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test score in the charter school in that market would then be:

y̌ch,t,m = (ach,t,m)1+θch

= (at,m)1+θch = (am)1+θch ,

where the first line follows from there being a continuum of students, the first part of the

second line follows from the fact that all students in m, t chose the charter school (by as-

sumption), and the second part of the second line follows from the invariance of market

ability distributions over time. Because the market ability distribution is known (again, by

assumption for this argument), we can compute am and then solve for θch or estimate it by

considering all charter schools collected in mch. Perform the analogous exercise to estimate

θtps for public schools.

At first pass, it may seem odd that within-market distance distributions play no role

in the above identification argument. There is an intuitive reason this oft-used source of

identifying variation is not necessary for this “identification at infinity” type argument: by

considering markets with “perfect” sorting and the fact that there is another restriction

implied by integration, i.e., ach,t,m =
∫
afch,t,m(a)da, where fch,t,m(a) is the density function

for student ability at the charter school in market m in period t, the relationship between

own and peer ability is known. If the relationship between own and peer ability were not

known the above argument would not go through. However, within-market variation in

distance from charter and public schools, though not necessary for identification, helps to

more precisely estimate the technologies. Intuitively, the further all students in a market are

from the charter school, the less sorting on ability there would be in that market.

B.5 Sample Selection Table 13 compares selected variables for the full sample and esti-

mation samples. The means of most variables for public schools in the full and estimation

samples are similar. In both the full and estimation samples, markets with charter schools

have higher fractions of Black and Hispanic students, yet charter schools have lower fractions

of both types of students relative to public schools in such markets. In both samples, female

students comprise a smaller share of students at charter schools than they do for both types

of public schools, and students attending charter schools are much more likely to have had at

least one parent who has attended at least some college than students at either type of public

school (in the estimation sample, 75% for charter schools versus 60% for public schools in

markets with charters and 43% for public schools in markets without charters).

Table 14 shows how sample restrictions affect the test score distribution. In particular,

removing students who attended a public school outside their market increases the average
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test score for students attending charter schools.37 About 20% of excluded students are from

one charter school.

37Note that the extent of the bias induced by using a subset of charter school students cannot be derived
from simple comparisons of the mean test scores of charter and public schools in duopoly markets. What
matters is the distribution of ability among excluded households.
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B.6 Discussion of Market Definition Markets need to be defined in order to solve the

model. Unfortunately, there is no natural (i.e., institutional) definition of market boundaries

because charter schools may draw from more than one traditional public school. The least

restrictive assumption would be to treat the entire state as one market. Such an assumption

would not be a good fit for this analysis, which studies charter schools across the entire state

of North Carolina. Therefore, there has to be some smaller definition of a market to head off

the somewhat absurd scenario wherein schools in the state compete for students hundreds

of miles away.

Any feasible definition of markets must be applicable even to locations without charter

schools; otherwise, a charter school’s value of entry, hence its probability of entry, cannot

be computed. In the end, a tradeoff between fidelity to the institutional environment and

computational complexity determined which feasible alternative worked best. Because the

route taken excludes some households, I conducted several exercises to examine how robust

the main findings were in terms of this assumption.

I start by discussing potential alternative definitions of markets. I then discuss in further

detail the robustness exercises carried out, in particular, re-estimation of the model excluding

markets with higher shares of students violating market definitions.

B.6.1 Potential Alternative Market Definitions I considered using both feeder schools and

public school districts to define markets. I also considered aggregating public schools into

“synthetic schools” comprising larger markets than single-school catchment areas. I will

now discuss in detail the issues encountered when defining markets in these ways and why,

unfortunately, none provides an obviously better definition for this analysis.

Alternative definition 1, Feeder schools: One way to determine which students may have

been choosing between their middle school and a particular charter school would be to first

determine which primary schools feed middle schools competing with each charter school,

and then assign any students in any of those primary schools to be in the same market as

the charter school.

The problem with using feeder schools to define markets is that they cannot be used to

define markets in areas charter schools have not entered. Consider an isolated area with

two middle schools and no charter schools anywhere nearby. Because we have not observed

charter school entry in this area, the feeder school algorithm cannot be used to determine

whether these middle schools should comprise one or two markets. It is necessary to define

markets in such areas, however, to calculate the value of entry to the charter school in

areas where there are no charters, which drive the estimates of the entry cost distribution.

One option would be to assign each middle school in this example to be in its own market.

50



Unfortunately, such a rule would treat markets observed with charters (i.e., those where we

grouped middle schools into one market, based on feeder schools) and markets not observed

with charters differently.

Identifying feeder schools in markets without charter schools is easier when considering

geographically isolated traditional public schools, because there are no “markets” to poten-

tially group together. Interestingly, the robustness exercise which re-estimates the model

using only markets with low shares of market crossers focuses on similar markets. That is,

it effectively uses the markets where the feeder school definition could reasonably be applied

even without having observed charter school entry, because there are no other public school

options nearby.

A related approach would aggregate public schools into markets based on observed pat-

terns of competition. For example, if a charter school has many students in attendance

who transferred from two nearby public schools, one might combine the two public schools

into one market. However, similar to feeder schools, this method does not provide a rule

to combine public schools in areas where there are no charter schools, which is necessary in

order to compute equilibria for all markets. By using distance to assign charter schools to

markets, I provide a definition of markets that can be applied even in the absence of charter

schools.

Alternative definition 2, School districts: Another plausible alternative to using distance

to create markets would use an administrative boundary, such as the school district in

which a traditional public school is located. However, creating markets this way would be

problematic for three reasons:

1. Extremely high computational burden: If every school could compete with all the schools

in their district, it would be necessary to solve the game for every possible combination

of charter school entry outcomes, which would tremendously increase the computational

burden.38 There is no natural upper limit on the number of charter schools that might

enter a district. The upper bound on the number of potential charter school entrants should

be large enough so as not to mechanically fit entry probabilities by limiting the number of

entrants. For example, if there could be as many charter schools as there are public schools,

this would entail computing equilibria for over 2 million games for the largest district, which

has 21 public middle schools, clearly an infeasible exercise. Additionally, the vast majority of

these games (> 99.999%) would involve more than one charter school, and each game would

be more computationally expensive to solve because it would pit up to 42 schools against

each other, as opposed to the current setup where there is only one school competing with

38A district with up to five charter schools would have 31 (=
∑5
k=1

(
5
k

)
) possible games. A district with

up to ten charter schools would have 1,023 possible games.
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any other school in each game.39

Unfortunately, existing results from work in related areas do not easily extend here. Seim

(2006)’s method for estimating an entry game where firms compete with multiple firms can-

not be used because the payoff to entry is endogenous in the current setting. Allowing

multiple charter schools to compete with a public school would require calculating the value

of entry for a subgame corresponding to every possible combination of charter schools, in

every market and time period. Seim (2006) was able to implement this because she as-

sumed that the matrix characterizing how the presence of firms affected other firms’ payoffs

was a primitive object and, therefore, policy invariant. One contribution of this paper is

that it studies interactions between charter and traditional public schools, which would not

be possible to study if the degree of interdependence between school payoffs was a model

primitive.

Ferreyra and Kosenok (2015) allow students to attend all charter schools in a large market

(Washington D.C.). A single market is a good fit for their environment because it corresponds

to an administrative unit, and also implies a reasonable geographic size for a student to

commute within.40 They assume that multiple charter schools might compete with the

same public school, but that public schools only react to charter schools through reduced-

form policy functions. This assumption allows them to avoid solving a game where every

charter and public school optimizes inputs, taking into account every other charter and public

school, which would necessarily result in the environment studied in the current paper, due

to endogenous public school effort choices. Again, because a focus of the current paper is

on public school reactions to charter school entry, and investigating how those reactions

would look in markets that have not yet had charter schools, I would lose a key and novel

element of this paper’s analysis by treating public school policy functions as fixed. That,

and the marked difference in geographic scopes, causes me to view my paper and Ferreyra

and Kosenok (2015) as complementary.

2. It is not clear where within districts charter schools should be located: In general, it is not

39Having more than two schools compete would also make calculating each school’s objective more difficult.
As seen in the equilibrium characterization in eq. (22), the model emits a simple expression for the probability
that a student of a certain ability will choose the charter school when there are two schools in the student’s
choice set. If, say, a multinomial logit were used instead the model would no longer emit such a simple
expression for the measure of students attending each school when solving for school best responses.

40Even the work of Ferreyra and Kosenok (2015), which allows for quite rich school choice sets (i.e., the
entire DC school district), does not allow households from outside DC to attend DC charter schools, even
though in reality it is possible for households outside DC to attend DC charter schools. See the Washington
DC School Reform Act, Section 38-1802.06 for details (http://www.dcpcsb.org/sites/default/files/
report/School%20Reform%20Act.pdf). This simply reinforces the point that any market definition for the
study of charter schools requires making a tradeoff between fidelity to the institutional environment and
computational complexity.
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clear where within a district a charter school should be located if the market were the school

district boundary. This matters because districts would be much larger than markets as

they are currently defined, increasing the importance of considering within-market location

decisions. The current algorithm computes a market-level household distance distribution for

students from charter schools, using the distance distribution of students from public schools

(see Appendix B.3.3 for details). If there were multiple public schools in a market they would

likely have preferences over location within the market. Allowing for this would require

modeling the charter school location decision within a market, which would be considerably

expensive computationally, if a pure strategy location equilibrium existed at all. If, to

simplify computation, charter school locations within districts were assumed to be exogenous,

this would eliminate the ability of a charter school to compete with a particular public

school, which the current definition of markets allows for. Additionally, it is entirely possible

that modeling within-district locations might produce outcomes similar to those produced

under the current definition of markets, where charter schools are assigned to compete with

particular traditional public schools.

3. Some students would still violate market boundaries: Though not common, students may

cross school district boundaries to attend charter schools. Therefore, some students would

need either to be excluded from the analysis in the manner implemented in this paper or

dealt with some other way.

B.7 Robustness of Results to Market Definition This section explains how the choice of

modeling markets does not compromise the validity of estimates of model parameters and

inferences about charter school effects.

Charter school students in the estimation sample may have higher average ability than

those in the overall population because the algorithm used to assign charter schools to mar-

kets excludes some students observed attending charter schools, and the excluded students

on average have lower test scores. This could in principle affect the distribution of stu-

dent ability at charter schools, which could affect both estimates of production function

parameters and the distribution of estimated treatment effects.

I recover unbiased parameters for test score production technologies for charter and public

schools by developing an identification strategy that separates unobserved student ability

from the effectiveness of school inputs, even when students could sort on ability due to

differences in school inputs (details in Appendix B.4). Therefore, estimates of test score

production technologies are not biased by the sample restrictions induced by the market

creation algorithm. After establishing that parameters have been consistently estimated,

the estimated model can be used to quantify the extent to which excluding these households
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might affect the simulated distribution of treatment effects – in particular the direct effect

of charter school entry. I implement this by allocating excluded charter school students to

a synthetic market and solving for equilibrium charter school effort levels in this synthetic

market, given the ability distribution of excluded charter school students, and estimating

treatment effects as in Section 6. I also re-estimated the model excluding markets where

more than 5% of students crossed market boundaries to attend charter schools, and found

that estimated parameter values and treatment effects changed very little (see Appendix

B.7.1).

B.7.1 Robustness of Estimation Results to Sample Selection This paper uses a geographic

rule to construct markets, where markets based on closest traditional public school. The

advantage of this rule is that it works in all areas and is also tractable enough to afford

analysis of endogenous effort choices. To examine how this definition may have affected this

paper’s findings, I re-estimated model parameters excluding markets where more than 5%

of the students were observed ever crossing boundaries to attend a charter school. I then

calculated the distribution of treatment effects, finding that the results are quite similar.

First, it is important to note that few students violate the definition of markets. About

3% of students in a market cross the market boundary at some point to attend a charter

school, which is a very low number. In only five (out of 496) markets does the share of

students crossing boundaries to attend charter schools exceed 5%. This group comprises

4.2% of student-year observations from the estimation sample. Table 15 shows summary

statistics for student test scores and market shares in this subsample. It shows that the

students who violate the market definitions are similar to those who do not violate the

market definitions, seen in Table 4 and this is not causing any major bias. The excluded

markets contain some of the larger charter schools with lower test scores. This could be due

to both inputs being provided or student abilities; the treatment effects recomputed for the

subsample (presented below) suggest that it is more so the latter.

Table 15: Sample Means of Test Score and Market Share for Subsample Excluding Markets
Where More than 5% Students Cross Boundaries to Attend Charter School

Duopoly Markets Test Scores Market Share
Charter 3.200 0.055
Public 3.073 0.945
Monopoly Markets
Public 3.030 1.000

I now discuss the re-estimated model parameters on this subsample. The results described

below are very similar to the baseline estimation sample results. In fact, using the standard
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errors computed under the baseline specification, which includes all markets, none of the

re-estimated parameters are statistically significantly different from those estimated from

the baseline estimation sample. The main parameters driving the direct and spillover effects

of charter schools are essentially unchanged, with three minor differences:

1. The student cost parameters that were most affected by this exclusion criterion were

the student effort cost parameter ce (which increased by 36%, from -3.869 to -2.494)

and the interaction between student ability and the psychic cost of attending a charter

school, cch,a (which increased by 71%, from -0.361 to -0.106). The latter may stem

from the higher test scores of the subsample.

2. The standard deviation of the school preference shock, ση, decreases by about 5% when

these markets were excluded (from 7.985 to 7.585).

3. Excluding markets with more than 5% of students crossing boundaries disproportion-

ately excludes markets where charter schools had entered. Therefore, estimates of

charter school technology parameters change slightly, while from from traditional pub-

lic schools remain unchanged. The substitution parameter for the charter school, βch,

decreases by about 1.5% from -0.675 to -0.686. The returns to scale parameter at

charter schools, τch, decreases by about 1% from 0.953 to 0.943.

Using these re-estimated parameters and the corresponding subsample of the data, I also

re-computed the distribution of treatment effects to check whether the quantitative findings

were substantially changed. As might have been expected given the similar parameter es-

timates, these are also very similar for the estimation sample and the subsample excluding

markets. Specifically, Table 16 recomputes treatment effects presented in Table 11, using the

re-estimated parameters and excluding the five markets where more than 5% of the students

were observed crossing boundaries to attend charter schools. Two results of interest, the

effect of treatment on the treated and the spillover effect, remain basically the same: the

estimated mean of the direct effect ∆
direct

is 12% of a standard deviation (sd), up from 11%

sd in the baseline, and the estimated mean spillover effect ∆
spill

is smaller, down to 1% sd

from 2% sd in the baseline.

B.7.2 Using the Model to Correct for Potential Sample Selection Bias In this section I

provide an approximation for the bias induced on the direct treatment on the treated (TOT),

i.e. TOT for students attending charter schools, by excluding students who attend charter

schools outside their designated markets.
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Table 16: Robustness Results for Mean Direct and Spillover Treatment Effects by School
Choice in Duopoly and Monopoly Markets

Duopoly Markets ∆
direct

∆̌
direct

(∆direct − ∆̌direct) ∆
spill

TOT (Attend charter) 0.116 0.113 0.003 0.003
TOU (Attend public) -0.002 -0.012 0.010 0.010
ATE 0.007 -0.003 0.010 0.010

Monopoly Markets: TOU
Attend charter 0.013 0.016 -0.002 -0.002
Attend public -0.092 -0.097 0.005 0.005
ATE -0.084 -0.089 0.004 0.004

Recall that allowing these excluded students in the model would imply interdependence

between markets, violating the assumption that the markets form a partition of North Car-

olina. This interdependence would render the model computationally intractable: An equi-

librium where all schools were competing with all other schools would be far more complex

than the two-school version used in this paper because it would require solving equilibrium

outcomes for not only a large number of schools but also for every possible configuration of

charter school entry decisions.

One concern with this restriction is that excluding charter school students who on average

have lower test scores might affect mean ability of students at charter schools. As previously

discussed, this does not in principle induce a bias in estimates of test score production

parameters at charter or public schools: those parameters are consistently estimated so long

as student ability can be controlled for. If school effort choices and effective school inputs

to test score production have been consistently estimated, changes in the student ability

distribution will change the scale of the direct TOT but not alter its direction, so long as

mean ability and the difference between effective inputs at charter and monopoly public

schools for students attending charter schools is positive.41 In this scenario, a lower mean

of the charter school student ability distribution would only diminish the direct treatment

effect, resulting in upwards bias from excluding lower ability students.

I first approximate what the direct TOT would have been for the excluded students, and

then compute an average of direct TOT for the included and excluded samples, weighed

by the sample sizes. To capture the fact that excluded charter school students have lower

average test scores than included charter school students, I assume that the excluded charter

41“Effective inputs” are the expected test score at a school for student with ability 1, i.e.

ωsa
θs
s

(
αs(es)

βs + (1− αs)kβs
s

)τs/βs
. Differences in student ability exacerbate differences in effective inputs

between schools.
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school students all reside in one synthetic market, denoted m = ex.42 Let Iex denote the set

of excluded students, nex = |Iex| the number of excluded students, and Fex the distribution

function for ability of excluded students. The direct effect of treatment on the treated in

market ex is

(28) ∆
direct,TOT

ex =

∫
∆direct
i,ex fex(ai,ex)dai,ex

where fex(ai,ex) is the density of ability for excluded students and the direct effect for i,

∆direct
i,ex , is the difference in test scores between the synthetic charter and monopolist public

schools in market ex:

∆direct
i,ex = Eych (ai, ach,ex, ech,ex, kch,ex) + νyi,ch,ex − Eytps

(
ai, aex, e

mono
tps,ex, ktps,ex

)
− νyi,tps,mono,ex

where ks,ex and es,ex denote capital and effort levels for school s in market ex.

As was seen in Section 6.2, the treatment effect on the treated depends crucially on en-

dogenous school inputs and student sorting on unobserved ability. To evaluate the above

expression one needs the ability distribution for excluded students Fex, which can be approx-

imated using the same method used in estimation (Section 4), but substituting in charter

school average capital and effort inputs across all charter schools in all markets.43 As before,

assume the test score distribution is normal, which means that it is sufficient to recover

the mean and standard deviation for the excluded ability distribution.44 Mean ability for

excluded students is

ach,ex =

(
ych,ex

ych(1, 1, ech, kch)

) 1
1+θch

,

where ech and kch denote average charter school capital and observed effort across all markets.

The standard deviation of excluded student ability is recovered analogously. After recovering

the distribution of ability for excluded students, solve for equilibrium charter and monopoly

public school effort levels in market ex by assuming that each school in the synthetic market

has the average capital level for that school type across all markets, and that students are

the same distance from both the charter and public school.

Finally, one can combine treatment effects for included and excluded students to form

42Observations from 1998-2001 are pooled into the same synthetic market for the current exercise.
43An alternative would be to posit an effort level for the charter school that enters the recovery of the

ability distribution for excluded students, ẽch,ex, solve for the subsequent equilibrium effort level, ẽ′ch,ex, and
iterate to find a fixed point in the effort level for the synthetic charter school serving excluded students.

44Even if market ability distributions were normal, student sorting on ability would generically induce the
distribution of abilities for students at charter schools to be non-normal. Nevertheless, this method captures
the fact that excluded students have lower average test scores.
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an estimate of the extent to which the sample selection procedure may bias estimates of the

direct TOT. Let ∆
direct,TOT

incl denote the expected direct effect of treatment on the treated for

students attending charter schools who were retained in the sample, which represents nincl

students. The estimate of the overall direct effect of treatment on the treated, taking into

account excluded households, is

(29) ∆
direct,TOT

all markets =
∆
direct,TOT

ex nex + ∆
direct,TOT

incl nincl
nex + nincl

.

The market size of the synthetic market containing excluded students affects charter and

monopoly public school inputs, so results are reported for three scenarios: i) the market

serving excluded students is three times as large as an average market, ii) four times as

large, and iii) five times as large. The mean direct effect on excluded students is 11.1% of a

standard deviation (sd) in the first case (5.7% sd and 2.1% sd for cases ii and iii, respectively),

which returns a mean direct effect on charter school students to 10.9% sd in the first case

(9.7% sd and 7.9% sd for cases ii and iii, respectively).

Another way to characterize the extent to which excluded students might have a different

treatment effect than those included in the estimation sample is to use a back of the envelope

calculation applying the same effective inputs they would have received at charter schools,

adjusting for their different (lower) mean ability. Using this method, I calculate that the

direct TOT would be 9.4% sd, which is similar to the result obtained using the previous

method. In summary, excluding the students does not substantially affect the mean direct

effect of charter school entry on student achievement.

B.8 Sensitivity to Non-pecuniary Cost I now discuss how estimates of direct and spillover

effects would change if the cost of attending charters, cch, was significantly lower. If the

cost parameter partially captures binding charter school capacities, reducing it allows us to

understand how capacity constraints may affect achievement. I re-estimated the model with

the restriction that the charter school non-pecuniary cost parameter cch to be one-tenth of

its value in the baseline specification, which corresponds to about 1.5 sd in test scores. Other

than the other cost parameters, the parameter most affected is the standard deviation of

the school preference shock ση, which falls to about one-tenth of its baseline value. Ability

sorting is therefore stronger, causing the model to increase the probability that high-ability

students attend charter schools.

Although the fit of the restricted model is not as good as that of the baseline, qualita-

tive findings about how charter schools affect student achievement are similar between the

restricted and baseline models. Under the restricted model, the effect of attending charter
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schools for attendant students is substantial and positive (0.189 sd), and varies quite a bit

between charter schools. The mean spillover effect on public school students is -0.01 sd.

That is to say, as in the baseline results, charter schools on average increase achievement for

attendant students, are quite heterogeneous in how much they do so, and cause relatively

small mean spillovers on students at competing public schools.
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