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Abstract

We study health care provider agency and optimal payment policy in the context
of an expensive medication for dialysis patients. Using Medicare claims data we es-
timate a structural model of treatment decisions, in which providers differ in their
altruism and marginal costs, and this heterogeneity is unobservable to the government.
In a novel application of nonlinear pricing methods, we empirically characterize the
optimal unrestricted contracts in this screening environment with multidimensional
heterogeneity. The optimal contracts initially pay similar amounts as the one used by
Medicare at the time, but the marginal payment rates decline precipitously at higher
dosages. Adopting the optimal contracts would eliminate medically excessive dosages
and substantially reduce expenditures, resulting in approximately $300 million in gains
from better contracting. The approach we develop could be applied to a broad class
of problems in health care payment policy.
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1 Introduction

A central problem in health care is how to pay providers to treat patients. Asymmetric

information is pervasive because providers often have substantial information that is not

observed by payers, which are typically third parties. Therefore, payers have to decide how

to contract with providers to deliver care, while recognizing that providers possess relevant

information that they do not. Consequently, the effects of better or worse incentives can

have profound impacts on treatments, expenditures, and health.

Economists have devoted a great deal of attention to understanding the impacts of pay-

ment incentives on health care spending and health outcomes, and to suggest better methods

of payment (e.g., Cutler, 1995; Acemoglu and Finkelstein, 2008; McClellan, 2011; Clemens

and Gottlieb, 2014; Ho and Pakes, 2014; Einav et al., 2018; Currie and MacLeod, 2020).

However, while there has been extensive work examining the impacts of payment methods

on provider behavior, to date the literature has not directly applied contract theory to find

optimal payment arrangements for health care providers.

In this paper we use classic results for screening models (e.g., Myerson, 1981; Maskin

and Riley, 1984; Goldman et al., 1984; Wilson, 1993) to empirically derive optimal payment

contracts for an expensive and controversial medication used to treat anemia (a lack of red

blood cells) in patients with end-stage renal disease (ESRD, also known as kidney failure).

The medication, epoetin alfa (EPO), is administered by dialysis providers and is primarily

paid for by the Medicare program, the dominant payer for the treatment of ESRD in the

United States. The program spent more on EPO than on any other single medication for

several years in the 2000s ($2 billion in 2010, U.S. Government Accountability Office, 2012),

and there were strong financial incentives to administer EPO because provider margins were

on the order of 30 percent (Whoriskey, 2012). There were also substantial consequences

for health, with ongoing concerns about the risks of high dosages (Brookhart et al., 2010;

Whoriskey, 2012), which include serious cardiovascular events and death.

Our results indicate that optimal payment contracts could generate gains on the order

of $300 million per year and would eliminate medically excessive dosages—i.e., those which

are harmful on the intensive margin of treatment. This approach could be relevant for

provider-administered medications more broadly, and for other treatments where decisions

are primarily about the quantity, as we discuss below.

Key features of the setting make a screening model the appropriate framework to study

optimal contracting for EPO, and potentially for other provider-administered drugs and

treatments as well. The medication is given intravenously to nearly all patients with ESRD,

so the relevant choice is the quantity administered by the provider (the agent), as in the
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classic theoretical models. Also as in those models, the quantity is observed, because dosages

are reported on insurance claims submitted by the provider to the government (the principal),

which runs the Medicare program. At the same time, there is likely to be hidden information

about provider characteristics that affect treatment choices. Our model features two natural

dimensions of such unobserved heterogeneity: altruism and marginal costs. By altruism we

mean how much providers care about patient health versus their own compensation; however

this could include other intrinsic motivations such as professionalism (e.g., Ash and MacLeod,

2015; Currie and MacLeod, 2020), or extrinsic motivations to keep a patient healthy, for

example, so the patient can be treated in the future or to avoid malpractice liability. The

marginal costs of providing the treatment pertain to purchasing and administering the drug.

While the presence of asymmetric information generally results in a suboptimal outcome,

altruism attenuates the distortion because providers put weight on patient health, which the

principal values.

We use data from Medicare claims in 2008 and 2009, a period when the payment policy

was stable and when there were no major informational shocks about EPO. As with most

insurance claims, the treatments are observed, in this case the dosages administered to

patients. Furthermore, quite uniquely, a key quantitative measure of the patient’s condition

is available in the claims data. Providers were required to report the patient’s red blood

cell level (i.e., the severity of their anemia) in order to be paid for the EPO, and these

blood levels are recorded on the claims. Other Medicare data provide rich information on

additional patient characteristics, such as the presence of relevant comorbidities. Because

of these institutional features and rich data, we are able to use a relatively simple approach

to estimate the structural parameters of our theoretical model. Our specification yields

linear reduced forms of the structural model, which can be estimated by OLS, while having

sufficient flexibility to fit the data, and the structural parameters are direct, closed-form

functions of the reduced-form estimates.

Our estimates indicate that altruism is important in this context, and that there is sub-

stantial heterogeneity across dialysis providers, in both their degree of altruism and their

marginal costs. Theory therefore implies that, in contrast to the observed linear payment

contracts, the optimal contracts must be nonlinear, so that there are varying marginal in-

centives to help mitigate the distortions from asymmetric information. Furthermore, we

show that the observed reimbursement rates were too high: they cannot be rationalized as

optimal, even when restricting to linear contracts.

We derive the optimal contracts using the demand profile approach (Goldman et al., 1984;

Wilson, 1993). This approach, which was developed for monopoly pricing problems and has

not previously been applied to supply contracting, tractably accommodates multidimensional
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heterogeneity, as opposed to standard methods for solving for optimal contracts, which only

work with heterogeneity of one dimension. This approach enables us to characterize the

unconstrained optimal contracts (which are conditional on patient characteristics), which

would not only improve over the status quo, but would also in concept obtain the second-

best allocations. We also show that the demand profile approach is broadly applicable to

supply contracting problems like this one.

At low dosages, the optimal contracts are roughly similar to the observed contract (a

traditional fee-for-service contract), with a fairly constant marginal payment rate that is

close to, but below, the average reimbursement rate used at the time. However the optimal

marginal payment rates drop rapidly around the median dosage, falling by 75% or more.

Furthermore, there are important differences in where and how the optimal rates decline,

depending on the patient’s red blood cell level. The decline occurs at lower dosages for

patients with higher levels, who benefit less from EPO, while it begins at higher dosages and

proceeds more gradually for patients with lower levels. This reveals important qualitative

features of the optimal contracts that could be useful for practical implementations of the

policy, such as a set of tiered payment rates that depend on the red blood cell level.1

Our simulations of outcomes under the optimal contracts indicate that Medicare could

substantially improve beneficiaries’ health while reducing its expenditures. Seemingly un-

justified variation in dosages, driven by the heterogeneity in provider altruism and marginal

costs, is reduced by 27 percent, and the mean payment is reduced by 27 percent (the match-

ing values are coincidental), for a patient with the median red blood cell level. This would

improve the value of the government’s objective, which depends on both patient health and

total expenditures, by an amount equal to $1,500 per patient per year. Additionally, we can

quantify the losses due to the asymmetric information about providers, perhaps for the first

time in a health application. Those losses are substantial, equal to $2,200 per month for a

patient with the median red blood cell level.2

The issues we address with this analysis are likely to be important for many provider-

administered drugs, which cost Medicare (Part B) $39 billion in 2019 (Medicare Payment

Advisory Commission, 2021) (over 12 percent of total Medicare spending) and is one of

the most rapidly growing areas of Medicare spending, and which have been the object of

ongoing concern and attempts at policy reform (Bach, 2009). This is also broadly relevant

1One might ask why Medicare would not simply impose a “forcing contract” that effectively required
providers to administer an amount that would, for example, maximize a patient’s health. We allow for such
a contract, but it would not be optimal because it would be very costly to induce providers with high costs
(or low altruism) to administer such an amount.

2This is in line with the results from studies of other contexts, which similarly find very large losses due
to asymmetric information (e.g., Gayle and Miller, 2009; Abito, 2020, discussed below).
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to longstanding concerns about financial incentives and excessive utilization of health care

in general, as cited earlier. In fact, the approach we develop here is potentially applicable

to a broad class of problems—the key features are that decisions relate to the quantity of

treatment (as opposed to a choice among different types of treatment), and that the quantity

of treatment is observable.

Our paper relates to the rich literature on health care provider agency (see e.g., McGuire,

2000; Chalkley and Malcomson, 2000, for overviews). The model of provider utility we em-

ploy is very similar to that in Ellis and McGuire (1986) and Gaynor et al. (2004), but allows

for heterogeneity in altruism and costs. De Fraja (2000) and Jack (2005) theoretically study

these forms of heterogeneity across physicians, although there are various distinctions be-

tween their models and ours.3 Choné and Ma (2011) also consider how physician altruism

may affect the design of optimal payment contracts, and Godager and Wiesen (2013) pro-

vide experimental evidence about heterogeneity in altruism among medical students. Like

Clemens and Gottlieb (2014), we empirically examine the impact of Medicare payment in-

centives, although they look at payment incentives broadly, as opposed to our focus on a

specific medical context. In the context of dialysis care, Eliason et al. (2019) examine the

effects of corporate ownership on treatment decisions and patient outcomes, and find that

drug dosages and other inputs change, and key outcomes worsen, after facilities are acquired

by a chain.4

Some recent papers on financial incentives in health care examine the effects of counter-

factual payment or insurance contracts on expenditures and patient outcomes. Einav et al.

(2018) estimate a dynamic model to study how dynamic incentives in payments to long-term

care hospitals affect the timing of discharges. Their model includes provider altruism, like

ours, but asymmetric information is not a salient feature of their environment. Ho and Lee

(2020) estimate a model of employee choice of health insurance plan and medical spending,

and use their estimates to consider insurance plan offerings that raise average employee sur-

plus at a single employer. Einav et al. (2021) examine provider selection into a voluntary

bundled payments program, and simulate outcomes under alternative lump-sum payments

for the bundle. All of these papers show that substantial improvements are possible by mod-

ifying the salient features of their observed contracting regimes (e.g., “short-stay” thresholds

or coinsurance rates).

Our work also relates to the small number of existing papers that structurally estimate

asymmetric information models. As noted by Chiappori and Salanié (2003), despite the

3For example, Jack (2005) uses a model with unobserved effort, while in our setting the most relevant
aspect of the treatment is observed (i.e., the dosage of the drug).

4Grieco and McDevitt (2017) similarly use the specific context of dialysis care to examine an issue of
broad importance in health care, the tradeoff between quantity and quality.
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rich theoretical literature on contracting in asymmetric information environments, there is

little empirical work that leverages the power of contract theory to derive optimal payment

contracts. Einav et al. (2010) discuss the small literature doing this for insurance contracts.

Perhaps most closely related in terms of the modeling approach is the literature on optimal

regulation, which considers screening models albeit in contexts that differ from ours in im-

portant ways (e.g., Wolak, 1994; Gagnepain and Ivaldi, 2002; Abito, 2020). As in the work

by Gagnepain and Ivaldi and by Abito, our setting and data allow us to estimate structural

parameters without imposing optimality of the observed contract, so we can test (and end

up rejecting) the optimality of the observed contract. However in contrast to the models

used in that literature, we allow for multidimensional heterogeneity, which requires a differ-

ent approach to characterize the optimal contract. Furthermore, as we discuss in Section

3, the demand profile approach could be broadly applicable to supply contracting problems

like ours. Other papers, on optimal compensation, consider hidden action environments.

Paarsch and Shearer (2000) use optimal linear contracts to calculate the incentive effects

of piece rates for tree planting, and Gayle and Miller (2009) quantify the welfare loss from

moral hazard in executive compensation.5

In what follows, we first provide background information on dialysis financing and treat-

ment (Section 2). In Section 3, we introduce the model and then derive the optimal payment

contract. Section 4 presents the data we use for our empirical analysis, and Section 5 de-

scribes the empirical implementation, including specification, identification, and estimation.

Our main results comparing the optimal contracts with the observed contract are then pre-

sented in Section 6.

2 Background on Dialysis Financing and Treatment

End-stage renal disease (ESRD), or kidney failure, is a chronic and life-threatening condition

that affects over half a million individuals in the United States. Since 1973, the Medicare

program has provided universal coverage for the treatment of ESRD, regardless of age. In

2009, at the end of our study period, Medicare spent $28 billion on health care for individuals

with ESRD (over 7 percent of total Medicare spending), and of that amount, $1.74 billion

5Our environment also has similarities to those that studied in the literature on optimal taxation in
hidden information environments, which was initiated by Mirrlees (1971). Much of the empirical literature
on optimal taxation adopts a “sufficient statistics” approach, which affords a relatively agnostic way of
computing the welfare effects of infinitesimal changes in the contract (see, e.g., Saez, 2001), or quantitatively
examines the effects of a restricted class of mechanisms, without theoretically characterizing the optimal
contract (see, e.g., Blundell and Shephard, 2011). Our paper offers a tractable way to fully and analytically
characterize the empirical unconstrained optimal contract using our estimates of structural parameters.
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was paid specifically for EPO.6 The drug is used to treat anemia, a lack of red blood cells,

which often accompanies chronic kidney disease.7 EPO stimulates red blood cell production,

and it is administered at regular intervals to try to maintain a certain target level of red

blood cells. The level is commonly measured in terms of the hematocrit, which is the volume

percentage of red blood cells in the blood.

An important biological fact is that the half-life of EPO is under 12 hours (Elliott et al.,

2008), which motivates our use of a static framework to model this treatment decision. Ad-

ditionally, patient hematocrit levels are highly variable over time. From one month to the

next, more than half of the patients in our data experience a change of greater than one per-

centage point (see Appendix Table A6), which is a clinically relevant difference. Accordingly,

providers regularly adjust the dosages for each patient to address these fluctuations.

For ESRD patients, EPO is typically administered intravenously during each dialysis

session, which occur multiple times per week (typically three times per week for three to

four hours each) at specialized facilities called dialysis centers. Because dialysis occurs so

frequently, and because patients are often fairly debilitated by it, travel costs are quite high

and patients regard facilities as highly differentiated with regard to location (Eliason, 2019),

which limits selection.

The staff at dialysis centers consists of one medical director (a physician, usually a

nephrologist), with additional physicians at larger facilities, and multiple nurses and medical

technicians.8 Physicians are independent practitioners who may endogenously match with

dialysis facilities.9 Physicians prescribe dosages of EPO for patients, and nurses or medi-

cal technicians administer the injection of the prescribed dosage. Payments are primarily

made to the facilities, not the individual physicians or nurses, which is partly why we treat

each dialysis center as a unitary provider. In what follows, we call the agent making dosage

decisions for patients a “provider.”10

6USRDS 2016 Annual Data Report, volume 2, chapter 11; available at https://www.usrds.org/annual
-data-report/previous-adrs/. Amounts are for Medicare fee-for-service payments, and the amount for EPO
includes a related drug, darbepoetin alfa, made by the same manufacturer. The total social expenditures on
ESRD and these drugs were even higher because many beneficiaries make copayments of up to 20%.

7EPO is a biological product, or “biologic,” but we will typically refer to it as a drug. Another drug,
injectable iron, is often used in conjunction with EPO to treat anemia in ESRD patients, but expenditures
on iron were much smaller. In 2005, EPO accounted for 70% of expenditures on separately billable drugs
for ESRD patients (GAO, 2006).

8See NEJM Catalyst, https://catalyst.nejm.org/the-big-business-of-dialysis-care/, for a useful overview
of how dialysis centers are run.

9Physicians may have a financial stake in a dialysis facility, e.g., by owning it themselves or through a
joint venture. (Private communication from Christos Argyropoulos, M.D. and from an anonymous referee.)

10Treating a facility as a unitary provider is consistent with the health economics literature, which for
the most part does not distinguish between health care organizations and physicians (e.g., Eliason et al.,
2022, 2019; Einav et al., 2018), and with treatments of the firm in economics in general, which often presume
(explicitly or implicitly) that firms provide incentives to workers to achieve firm objectives.
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The main cost of providing EPO is acquiring the drug from the manufacturer (via a

distributor), because its production involves an expensive biological process, and one man-

ufacturer had a monopoly over this class of medications at the time. This motivates the

assumption of constant marginal costs in our model, as the pricing in the purchasing con-

tracts was largely per unit. Administering the drug to patients also involves non-trivial costs

of staff time to prepare the dosages and monitor the injections (see Section 5.2), which is an

additional source of cost heterogeneity.

Medicare’s payment policy for EPO was debated throughout the 1990s and 2000s, largely

because of concerns that the reimbursement rates were too generous and encouraged over-

provision.11 While dialysis itself was reimbursed with a prospective payment system known

as the “composite rate,” which paid a fixed amount of roughly $135 per session, EPO was a

separately billable drug with its own per-unit reimbursement rate. Prior to 2005, that rate

was held fixed at $10.00 per 1000 units. In 2006, Medicare adopted a new policy where the

rate was based on average sales prices calculated from data reported by the manufacturer.

This policy, which was in effect through 2010, set a limit on the reimbursement rate each

quarter, equal to 106 percent of the national average sales price from roughly six months

earlier (GAO, 2006).12 This provides the variation we need to estimate the model parameters

governing how providers respond to the marginal payment rate for EPO.

Because of the concerns about overprovision, Medicare also required dialysis centers to

report a patient’s hematocrit level on their insurance claims. The facilities typically filed

monthly claims for each patient, which included separate lines for each dialysis session and

each injection of EPO over the month. To be reimbursed for the EPO, these claims were

required to report a hematocrit level taken just prior to the monthly billing cycle. Having

a lab result like this in claims data is highly unusual, and it provides us with a specific

quantitative measure of the patient’s condition, in this case the severity of their anemia.

Thus, a key determinant of the medically appropriate treatment amount is observable, which

facilitates a relatively simple approach for estimation.

Alongside the concerns about overprovision, there had been substantial uncertainty about

the benefits and risks of EPO (see, e.g., Foley, 2006). Many clinicians and medical researchers

felt it was important to counteract severe anemia, to improve quality of life and address other

specific risks associated with anemia. In the early 2000s, the National Kidney Foundation

11There were concerns both that dosages were supraoptimally high (i.e., marginal benefits less than
marginal costs) and that dosages were high enough to harm patient health (i.e., negative marginal product).
We will refer to the former as “overprovision” and the latter as “medically excessive”.

12In 2011, Medicare adopted a comprehensive “bundled” PPS for dialysis that included EPO, so the
payment policy for the drug effectively switched from fee-for-service to prospective (i.e., lump-sum) payment.
See Eliason et al. (2022) for an analysis of the effects of this policy change.
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considered whether to recommend higher targets for the hematocrit level (NKF-KDOQI,

2006). However, the risks associated with high dosages of EPO became clear by the mid

2000s. A major clinical trial found that patients who were given more EPO to achieve

a higher target level of hematocrit suffered a greater risk of serious cardiovascular events

and death (Singh et al., 2006).13 This study was published in November 2006, and strong

warnings (“black box warnings”) were added to the drug’s labels in 2007.14

As a result of this and other studies, the recommended range for hematocrit in ESRD

patients remained at lower levels. For example, the National Kidney Foundation recom-

mended the use of hemoglobin targets from 11 to 12 g/dl, corresponding to hematocrit levels

of 33–36% (NKF-KDOQI, 2007), and the FDA maintained its suggested range of hematocrit

targets at 30–36%. Broadly, it seems that clinicians felt there were health benefits from

providing EPO to patients with low red blood cell levels, as well as serious risks from ad-

ministering high dosages of EPO. Consequently we assume the health production function

in our model is first increasing in the dosage and is then decreasing after some point.

The dialysis industry was also undergoing rapid consolidation over the decade from 2000

to 2009, with the largest number of acquisitions occurring in 2006 (see Eliason et al., 2019,

for an analysis of the impacts of this consolidation).15 By 2009, two large chains treated a

combined 60 percent of dialysis patients in the US.16 However, there is scope for variation

in dosing decisions across facilities within a chain; for example, federal regulations explicitly

state that each facility should have “some authority to individualize corporate policies to

address unique facility situations” (ESRD Program Interpretive Guidance 2008, p. 279).

Costs also vary across facilities within a chain, including the cost of acquiring EPO. While

both chains had purchasing agreements for EPO with its manufacturer (Amgen), there are

a number of parts of the agreements that are consistent with there being variation in prices,

rebates, and discounts across facilities owned by the same chain, as opposed to a single

corporate rate.17 Additionally, annual facility-level cost reports submitted to Medicare show

this variation in per-unit prices for EPO within chains (see Section 4).

Accordingly, in the empirical analysis, we treat each dialysis center as an independent

13Eliason et al. (2022) confirms these risks and provides evidence on other health effects of EPO, outside
the setting of a clinical trial, using a novel instrumental variable.

14During our study period of 2008 and 2009, there were no major informational shocks like this.
15During 2008 and 2009 there were a relatively small number of acquisitions, 26 and 104, respectively

(private communication from Chris Ody).
16USRDS 2011 Annual Data Report, volume 2, chapter 10; https://www.usrds.org/atlas11.aspx.
17The purchasing agreements are on file with the Securities and Exchange Commission, and redacted

versions are publicly available. The agreements covering our study period are located here https://ww

w.sec.gov/Archives/edgar/data/927066/000119312508042304/dex1062.htm (for DaVita) and here
https://www.sec.gov/Archives/edgar/data/1333141/000132693207000082/f01549exv4w18.htm (for
Fresenius).
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entity, with its own marginal cost and degree of altruism. This allows for heterogeneity both

within and across chains, and fits naturally with our theoretical framework. However, we

examine the robustness of our analysis to this assumption by also estimating a version of the

reduced form that includes facility fixed effects, which allows for an arbitrary distribution

of these effects within and across chains (e.g., an arbitrary correlation structure). The co-

efficient estimates are essentially unchanged, which suggests that this issue of independence

is not a first-order concern for our analysis. Also, having one common distribution of un-

observed provider characteristics fits with having one common contract for all providers.18

Medicare does not write separate payment contracts for each provider, or for each health

system or corporation. Indeed, having separate contracts could be very costly to administer,

and could potentially allow for distortions from lobbying by individual organizations.

3 Model

Our model uses a static screening framework, describing an interaction between a principal

and an agent. The government (the principal) pays a provider (the agent) to treat a patient.

The government seeks to maximize the benefit for patient health minus the cost of a payment

to the provider. Thus, the government can be thought of as acting on behalf of patients, who

receive benefits from treatment but have to fund public health insurance. The provider’s

utility also depends on patient health, weighted by the provider’s degree of altruism, along

with the cost of administering the treatment and the compensation received.

The patient arrives at the provider with a baseline health status, b, and other relevant

characteristics, x. The provider then chooses a treatment amount, a. As is common in

the literature on physician behavior (e.g., Ellis and McGuire, 1986), we assume the patient

accepts the treatment exactly as prescribed by the physician.19 In our application, b is the

hematocrit level from the prior month, x represents other patient characteristics that may

affect the health benefits and risks of EPO, and a is the total units of EPO administered over

the current month; a, b, and x are all observed by the government (and the econometrician)

because they are reported in the monthly claims.

Given the patient’s health status and other characteristics, the treatment produces health

according to the health function, h(a; b, x). This function summarizes the overall health

benefits and risks of EPO (as perceived by the provider) for a dialysis patient with anemia,

such as relieving the effects of chronic anemia versus increasing the risk of cardiovascular

18We confirm that a single, unimodal, distribution fits the residuals from our model in Appendix K.3.
19Because the medication is administered intravenously while the patient is undergoing dialysis, there is

no issue with patient compliance, as opposed to patient adherence to oral medications or diet and exercise.
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events, as described in Section 2. Accordingly the function is initially increasing in a but is

then decreasing in a after some point. We refer to dosages with negative marginal product

(h′(a; b, x) < 0) as “medically excessive.”20 The marginal product also depends on the

baseline health b and other characteristics x, because patients with lower hematocrit typically

need more EPO, and certain characteristics modify the effectiveness and risks of EPO. Last,

the function h is assumed to be twice differentiable and strictly concave in a, because patients

with more severe anemia benefit more from EPO, while the serious health risks from the

drug increase with larger dosages.

The degree of provider altruism, α, gives the provider’s marginal rate of substitution

between the patient’s health and the provider’s own income. The provider also has a constant

marginal cost of treatment, z. These two attributes are unobserved by the government, and

we refer to (α, z) as the provider’s type. Heterogeneity in altruism captures differences

between providers’ preferences.21 The treatment costs reflect the costs of acquiring and

administering EPO, both of which can also be expected to be heterogeneous. However, while

we allow for both altruism and cost heterogeneity, whether there is substantial heterogeneity

along either dimension is an empirical question, which we address in our econometric analysis.

The joint distribution of these attributes is F (α, z), with the associated density f(α, z) that

is strictly positive and differentiable over a compact set [α, α]× [z, z] ⊂ R2
+, where α and z

are strictly positive and α and z are finite.

The government sets a payment policy, which specifies the payment to be made to the

provider based on the treatment amount, the baseline hematocrit, and the other observed

patient characteristics. The policy consists of a set of potentially nonlinear payment contracts

for the treatment amount, P (a; b, x), one for each possible value of (b, x). That a affects the

payment amount means we are considering a general form of fee-for-service contracts, and

the presence of (b, x) is analogous to risk adjustment in a broad sense. While both fee-

for-service and risk adjustment are ubiquitous in health care payment systems, we permit

unrestricted flexibility in payment contracts, in contrast to commonly analyzed (e.g., linear)

contracts.

The timing is that of a typical screening model. The government sets the payment policy

20Note that “medically excessive” is a statement about the production technology h and is distinct from a
normative economic concept. We use “overprovision” to refer to economically excessive amounts. However,
these concepts are related because a medically excessive amount will always be economically excessive.

21As noted in the introduction, what we refer to as “altruism” could include other intrinsic or extrinsic
motivations to care about patient health. Providers may also vary in their beliefs about the benefits and
risks of EPO. Heterogeneity in beliefs could have similar implications for our analysis as heterogeneity in
altruism, because both would be expected to remain invariant in the counterfactual payment contracts we
consider. Furthermore, under some specifications, heterogeneity in beliefs could be observationally equivalent
to heterogeneity in altruism.
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{P (a; b, x)}, after which the provider’s type (α, z) and the patient’s baseline hematocrit

level (b) and observed characteristics (x) are realized. The provider then decides whether to

participate and, if the provider does participate, chooses a treatment amount (a). Finally,

the outcomes occur and payoffs are received.

The provider’s utility is a function of the patient’s resulting health, weighted by the

provider’s degree of altruism, minus the cost of treatment, za, plus the payment from the

government, P (a; b, x):

u(a;α, z, b, x, P ) ≡ αh(a; b, x)− za+ P (a; b, x). (1)

That is, the provider has quasilinear preferences, a standard assumption (Rochet and Stole,

2003). The provider’s reservation utility is u; this level of utility must be attainable in order

for the provider to participate.22

The government’s objective is also a function of the patient’s resulting health, weighted by

a parameter, αg, minus the payment to the provider.23 The government’s weight on patient

health generically differs from the provider’s weight if there is a nondegenerate distribution

of α; furthermore, because the government represents the patient, αg may be larger than the

median of α, for example. The government’s valuation of the outcome, where the patient

has baseline hematocrit b and observed characteristics x, and receives treatment amount a,

is as follows:24

ug(a; b, x, P ) ≡ αgh(a; b, x)− P (a; b, x). (2)

Because the provider’s type is not observed, the government considers the expectation of this

valuation over the distribution of amounts that would be chosen by different types, given

the patient’s baseline hematocrit b and other characteristics x.

We use Bayesian Nash equilibrium to define behavior. The provider chooses a treatment

amount to maximize utility function (1) given their type, the patient’s baseline health,

22Note that P (a; b, x)− za (which corresponds to profits if z is a purely monetary marginal cost) may be
negative, which has precedent in models of motivated agents (e.g., Besley and Ghatak, 2005; Jack, 2005).
See Choné and Ma (2011) for an example of a paper studying contracting in health care that constrains
profits to be nonnegative. In our application, z includes non-pecuniary components; moreover, the dialysis
centers provide many services, making it reasonable to allow for negative profits from the provision of EPO.

23 As is standard in these models, the principal’s objective does not include the agent’s objective, meaning
it does not represent social welfare. If the agent’s objective were included, there would be no distortions
from the efficient allocation. This is different from the optimal regulation literature, where distortions are
introduced via asymmetric weights on consumer surplus and profits (Baron and Myerson, 1982) or a cost of
funding the regulation program (Laffont and Tirole, 1986).

24This valuation does not include the costs of other “downstream” medical care, such as transfusions and
hospitalizations, that may be affected by changes in dosages of EPO. We use a simple calculation to examine
how those costs might change under the optimal contracts in Section 6, where the dosages decrease, and find
that there would be a modest reduction in downstream costs as well.
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and the payment policy (the incentive compatibility constraint). The provider also decides

whether to participate, and does not participate if the maximum possible utility would be

below the reservation utility (the voluntary participation constraint).25 The government sets

the payment contract for each (b, x), knowing how each provider type would respond. Thus,

given (b, x), the government’s problem is to maximize the expected value of (2), subject

to the provider’s incentive compatibility (IC) and voluntary participation (VP) constraints,

which must hold for each type:

max
P∈P

∫
α,z

[αgh(a
∗(α, z; b, x, P ); b, x)− P (a∗(α, z; b, x, P ); b, x)] f(α, z)dαdz

s.t. a∗(α, z; b, x, P ) = arg max
a≥0

u(a;α, z, b, x, P ), ∀α, z IC

u(a∗(α, z; b, x, P );α, z, b, x, P ) ≥ u, ∀α, z VP,

where the set of possible payment contracts, P , is the set of real functions.

The presence of the participation constraint means that a “forcing contract” that only

reimbursed the provider for a specific treatment amount could not be optimal, even though

it is in the set of possible payment contracts.26 While requiring voluntary participation is

standard in the literature, this assumption also speaks to the government’s concern that

providers be available to see patients. It is important to Medicare to have all dialysis

providers accept Medicare patients, and a forcing contract that compensated the providers

based on any type but the “worst” type, (α, z), would lead to some providers choosing not

to participate.27

Next, we turn to the solution of the model. First, we characterize the first-best allocation,

which would occur under full information. We then solve the model under asymmetric

information, starting with the provider’s behavior, and then presenting our approach to

derive the optimal contract, which results in the second-best allocation. This analysis is

presented for a single value of the baseline hematocrit and patient characteristics, and so b

and x are suppressed for the remainder of this section. Also, we focus on interior solutions

here to clarify the exposition. When solving the model for the empirical analysis, we allow

25We make the natural assumption that the treatment amount is zero if the provider does not participate
(this assumption only affects off-equilibrium behavior).

26For example, consider a contract that only compensated the provider for choosing the maximum full-
information amount, which would be the treatment amount chosen by the “best” type, (α, z), under full
information (see page 15). While this contract could induce the efficient allocation for the best type (we
show this also occurs under the optimal unrestricted contract), this type is only of measure zero. Meanwhile,
all other types would have to be paid more than it was worth to the government to have them participate.

27Even without voluntary participation constraints, the government might still not choose a forcing con-
tract. Those types for which voluntary participation is violated would provide zero, so the government could
improve its objective by inducing participation from different types that would provide different amounts.
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for corner solutions where some provider types administer zero units (see Appendix D). We

follow the screening literature in referring to this as exclusion (see, e.g., Armstrong, 1996),

which is distinct from non-participation.

3.1 Full-Information First Best

The full-information allocation provides a benchmark against which we can measure losses

due to asymmetric information. With full information, the government can effectively choose

the treatment amount for each provider type, denoted a∗FI(α, z). The interior optimality

condition is

αgh
′(a∗FI(α, z)) = z − αh′(a∗FI(α, z)). (3)

The efficient allocation equates the principal’s marginal benefit (left side) with the agent’s

marginal cost (right side), as is standard, but in this case the relevant marginal cost is

the effective, or “net,” marginal cost, which includes the effect of altruism. Unlike typical

asymmetric information models with non-altruistic agents, here the agent derives utility

from the same outcome as the principal does, and so the agent’s marginal benefit from that

outcome appears in the condition because it reduces the total marginal cost experienced by

the agent. The efficient allocation will never have medically excessive amounts (i.e., where

h′ < 0); therefore, the facts that the provider’s altruism weight is positive and that h is

strictly concave imply that treatment amounts in the efficient allocation are higher with

altruism than without.

3.2 Provider Behavior

Next we characterize the provider’s behavior under an arbitrary differentiable payment con-

tract P . The interior first-order condition is

z − αh′(a∗)︸ ︷︷ ︸
nc(a∗;α,z)

=
∂P (a∗)

∂a︸ ︷︷ ︸
p(a∗)

. (4)

As explained above, z − αh′(a) is the net marginal cost to a provider of type (α, z) for

administering amount a. It will be useful to denote the net marginal cost function as

nc(a;α, z) ≡ z − αh′(a), and the marginal payment function as p(a) ≡ ∂P (a)
∂a

. The provider

chooses an amount a∗ that equates the net marginal cost with the marginal payment; thus

nc(a;α, z) defines the supply curve for type (α, z). The solution is unique so long as the net

marginal cost curve intersects the marginal payment curve once, from below (as discussed

later in Section 3.3). Then, if h′(a∗) > 0, as we show will be the case under the optimal

13



nonlinear contract, a∗ is increasing in α and decreasing in z.

To see how the payment contract affects behavior by different types of providers, it helps

to start with a linear contract. Let PL(a) ≡ p0 + p1a denote an arbitrary linear contract,

where p0 is a lump-sum payment, and p1 is a constant marginal payment (i.e., the per-unit

payment rate). Then rearranging (4) to αh′(a∗) = z − p1, it is apparent that all provider

types with marginal costs below p1 would administer amounts such that h′ < 0, i.e., that are

medically excessive, while all those with marginal costs above p1 would not. In either case,

for a given marginal cost, having a higher degree of altruism makes the provider administer

a treatment amount closer to the health maximizing amount, due to the strict concavity of

h.

3.3 Optimal Contract

We now present our approach to solve the government’s problem and thereby characterize the

optimal nonlinear contract. Because agent heterogeneity in our model is multidimensional,

we cannot use more common methods based on the Revelation Principle. Those methods rely

on a strict ordering of agent types, so that the relevant (i.e., binding) incentive compatibility

constraints can be reduced to those between adjacent types in the ordering (e.g., Myerson,

1981; Maskin and Riley, 1984). No similar reduction of incentive compatibility constraints

can be obtained under multidimensional heterogeneity.

Instead, we use an analog of the “demand profile” approach (Goldman et al., 1984;

Wilson, 1993), which reformulates the principal’s problem in terms of finding the marginal

payments for each possible quantity. The power of this approach is that it projects a multidi-

mensional distribution of agent types onto a one-dimensional distribution of quantities, and

the solution for each quantity can be found separately when certain conditions are satisfied.

The government’s optimization problem is accordingly to set the marginal payment for

each treatment amount to maximize its marginal valuation of that amount, multiplied by the

probability the amount will be provided. Specifically, the government chooses the marginal

payment, p(a), for each potential treatment amount, a ∈ A, to maximize∫
A

S(p, a)[αgh
′(a)− p(a)]da. (5)

In essence, this integral is an infinite sum of the government’s marginal valuation of each

amount (i.e., the derivative of (2) with respect to a, which is inside the square brackets),

where each amount is weighted by the probability of receiving that amount, S(p, a). The

function S is the analog of the demand profile in Wilson (1993), but in our case it gives a

distribution of quantities supplied rather than quantities demanded. Specifically, S(p, a) is
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the probability that the provider is a type that will administer a treatment amount of at

least a, given the payment contract. In that case, the government will receive its marginal

valuation from amount a, which is αgh
′(a)− p(a).

The set of potential treatment amounts, A, is an interval spanning zero, which corre-

sponds to the amounts from excluded types, to ā∗FI ≡ a∗FI(α, z), the amount that would be

provided by the “best” type (highest altruism, lowest cost) under full information. We show

in Appendix C.3 that the standard “no distortion at the top” result is obtained (i.e., the

highest amount is undistorted) and that all other types’ treatment amounts are downwards-

distorted in the second-best allocation. This means that a∗FI(α, z) is the maximum equilib-

rium treatment amount under the optimal nonlinear contract.

Assuming that the net marginal cost curve for each agent type intersects the marginal

payment curve at most once, from below, which is an important regularity condition (dis-

cussed in detail below), S has a simple form:

S(p, a) ≡ Pr{p(a) ≥ z − αh′(a)︸ ︷︷ ︸
nc(a;α,z)

}, (6)

where the probability is over the distribution of agent types. The single intersection of net

marginal costs and marginal payments guarantees that, if the marginal payment at amount

a is greater than the net marginal cost for some provider type (α, z), as expressed by the

inequality in (6), then the marginal payments are greater than the net marginal costs for

that type at all lower amounts as well. Hence, any type that satisfies the inequality in (6)

would provide at least a, and so S(p, a) as defined in (6) gives the desired probability that

the marginal valuation at amount a is received.

Figure 1 provides some intuition by plotting the net marginal cost curves for two types,

(α1, z1) and (α2, z2), against a marginal payment curve, p(a). The net marginal cost curves

are upward sloping. Their slopes are equal to −αh′′(a), which is positive because h is strictly

concave. Hence, if the marginal payment curve is downward sloping, it will intersect the net

marginal cost curves once, from above, as required. Any type with a net marginal cost curve

below that of type 1 at a∗1 (i.e., any (α, z) such that z−αh′(a∗1) < z1−α1h
′(a∗1)), for example,

type 2, would provide more than a∗1.

Figure 1 suggests that this approach may be more broadly useful for solving screening

problems with multidimensional heterogeneity. The demand profile approach has mainly

been applied to monopoly pricing problems, but there the single-intersection condition can

be more difficult to satisfy because both the consumer demand curves and the marginal price

curve are typically downward sloping (see, e.g., Deneckere and Severinov, 2015, for discus-

sion). By contrast, because marginal cost curves are typically upward sloping, the condition
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Figure 1: Example marginal payment contract and provider supply curves.

Notes: Figure plots an example marginal payment contract p(a) (solid curve) and supply curves nc(a;α, z)
for a lower altruism type (α1, dashed line) and a higher altruism type (α2, dotted line); both supply curves
are for the same marginal cost type, i.e., z1 = z2.

can be easier to satisfy in monopsony applications (i.e., purchasing goods or services).28

Next, using the distribution of treatment amounts generated by (6), the government’s

problem (5) is solved separately for each treatment amount. In addition to the single-

intersection condition, this relies on the quasilinearity of the agent’s preferences (i.e., no

income effects), a standard assumption in screening models. Specifically, the provider’s

marginal utility at amount a does not depend on the marginal payment for any other amount,

so the effect of p(a) on the supply of amount a does not depend on the payments for other

amounts.29 The separate problems for each treatment amount are thus

max
p(a)∈R

S(p(a), a)[αgh
′(a)− p(a)], (7)

for each a ∈ A. Splitting the principal’s objective into independent problems for each

quantity in this way is the central idea in the demand profile approach, which makes it

tractable. It is similar to the classic idea of Ramsey (1927), which splits optimal taxation

across a variety of goods into a separate problem for each good.

28To verify that the condition is satisfied in our empirical analysis, we first solve for the optimal contract
and then check that no provider types have supply curves with multiple intersections with the marginal
payment curve, which could be upward-sloping for some treatment amounts.

29Without this separability, solving for the optimal nonlinear contract is significantly more cumbersome
(Maskin et al., 1987; McAfee and McMillan, 1988). See Deneckere and Severinov (2015) for a discussion.
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Finally, the optimal contract is characterized by the first-order condition of (7) for each

amount, treating p(a) as a parameter:30

∂S(p∗(a), a)

∂p(a)
[αgh

′(a)− p∗(a)] = S(p∗(a), a). (8)

This equates the marginal benefit from increasing p(a) (the change in the probability that

at least amount a is provided, ∂S(p∗(a),a)
∂p(a)

, times the marginal valuation of that amount,

[αgh
′(a)− p∗(a)]) with the marginal cost (paying incrementally more if at least amount a

is provided, which occurs with probability S(p∗(a), a)). The contract is constructed by first

solving (8) for p∗(a), for each a ∈ A, and then integrating the marginal payments to yield

P ∗ (see Appendix C.2 for details). The level of P ∗ is fixed by setting the lowest equilibrium

utility equal to the reservation utility, u, making that type’s participation constraint bind.

We present additional intuition about the optimal nonlinear contract and discuss norma-

tive aspects of the resulting allocation in Appendix C.3.

4 Data

We now turn to the empirical analysis. Our primary data come from Medicare outpatient

claims from renal dialysis centers (freestanding or hospital-based) in 2008 and 2009, for

the treatment of patients with ESRD. The raw sample (20% of patients) contains a total

of 1.4 million ESRD claims, which are typically filed monthly. Almost 90% of the claims

(1.25 million) bill for at least one injection of EPO or a related medication. All claims with

an injection include a baseline hematocrit level from the previous month (or a comparable

hemoglobin level), but claims without an injection do not report this. As a consequence,

we exclude claims without any injections of EPO.31 Also, in order to avoid extreme outliers,

which often reflect data entry errors, we remove observations where the reported amount of

EPO is above the 99th percentile. Finally, we restrict to observations where the baseline

hematocrit is within a broadly recommended range for using EPO, which is between 30

and 39 percent.32 This excludes 119,788 observations (10.6% of the remaining total) with

30The optimal contract is assumed to be differentiable almost everywhere. This does not seem restrictive
in our setting because we assume that the joint density function f(α, z) is differentiable, along with the other
primitives.

31EPO appears on the vast majority of the claims with an injection of this class of medication (93%).
The alternative drug was darbepoetin alfa. We restrict to EPO because dosages and reimbursements differ
between the two drugs.

32The FDA-approved labeling for EPO stated a suggested target range for hematocrit of 30 to 36 percent
(https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm), and guidelines issued by the National Kidney
Foundation recommended the use of hemoglobin targets from 11 to 12 g/dl, and not greater than 13 g/dl
(NKF-KDOQI, 2007), which is comparable to hematocrit targets from 33 to 36 percent, and not greater
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hematocrit levels below the recommend range, where treatment protocols may have differed,

and 87,595 observations (7.8%) above the range, where certain restrictions on reimbursements

may also have influenced dosages.33 The final sample has 919,745 claims, for 74,260 unique

patients, from 5,148 unique providers.

The unit of observation is the monthly claim, which reports the services given by provider

i to patient j in period t. As discussed in Section 2, we use the dialysis centers as the

providers, and the claims are submitted and the payments are received by them. The

treatment amount, aijt, is total amount of EPO administered over the claim period, and the

baseline hematocrit, bjt, is the prior hematocrit level reported on the claim.34 The payment

rate, p1t, is the national payment rate per 1,000 units of EPO for the quarter in which the

claim was filed. These rates are listed in publicly available Medicare Part B Average Sales

Price Drug Pricing Files.35 Last, the observable patient characteristics, xjt, which may affect

the benefits and risks of EPO, are demographics and comorbidities, specifically age, sex, and

the Charlson Comorbidity Index (CCI).36

Table 1 provides summary statistics of these variables. The average monthly dosage of

EPO is 63 thousand units, with a relatively large standard deviation of 61.7 thousand units.

The average baseline hematocrit is 34.8 percent, with a standard deviation of 2.2 percent.

The CCI, which is a count of patient comorbid conditions such as a prior heart attack (where

some conditions have weights greater than one) has a mean of 1.4. Most patients have no

comorbidities, as indicated by the median of zero, while those in the top quarter of the

distribution have multiple comorbidities. The bottom row of the table lists the national

payment rate for EPO for each quarter during our study period, which ranged from a low

of $8.96 in 2008Q1 to a high of $9.62 in 2009Q3. The average payment rate in our sample,

computed from the amounts reported on each claim, is $9.26 per thousand units.

Table 1 also shows the distribution of the annual average acquisition cost of EPO across

dialysis centers, from publicly available Renal Dialysis Facilities Cost Report Data.37 The

than 39 percent.
33Medicare reduced the reimbursement rate by half for EPO provided to patients whose hema-

tocrit exceeded 39 percent for three consecutive months (https://www.cms.gov/medicare-coverage-
database/details/medicare-coverage-document-details.aspx?MCDId=11).

34For claims that report hemoglobin rather than hematocrit, we use the standard rule of thumb of mul-
tiplying by three to convert the levels (WHO, 1968).

35https://www.cms.gov/Medicare/Medicare-Fee-for-Service-Part-B-Drugs/McrPartBDrugAvgSalesPrice/index.html.
The national payment rates are technically limits on the allowable reimbursement rates, which may be
modified for example to reflect overall healthcare costs in a local area (“geographic adjustment factors”).
However, the actual reimbursement rates that can be computed from the claims are highly correlated with
the national payment limits: in our sample the time-series correlation within providers is 0.98.

36The CCI has been validated for dialysis patients (Beddhu et al., 2000). To construct the index, we
apply the implementation from Quan et al. (2005) to Medicare inpatient claims (MEDPAR). Patient age
and sex are taken from the Medicare Beneficiary Summary File.

37https://www.cms.gov/Research-Statistics-Data-and-Systems/Downloadable-Public-Use-Files/Cost-
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Table 1: Summary Statistics

Percentiles
Variable Mean SD 10th 25th 50th 75th 90th

Monthly EPO dosage (1,000u) 63.0 61.7 8.8 20.0 42.9 84.0 143.0

Prior hematocrit level (%) 34.8 2.2 31.7 33.0 34.8 36.6 37.8

Charlson Comorbidity Index (0-16) 1.4 1.9 0 0 0 2 4

EPO payment rate ($/1000u) 9.26 0.24 8.96 9.07 9.20 9.58 9.62

EPO acquisition cost ($/1000u)† * * 7.13 7.23 7.53 8.15 9.11

Medicare national payment limit for EPO in each quarter ($/1000u):
8.96 9.07 9.07 9.10 9.20 9.40 9.62 9.58

(2008Q1) (Q2) (Q3) (Q4) (2009Q1) (Q2) (Q3) (Q4)

Notes: The EPO dosage, EPO payment rate, hematocrit level, and Charlson Comorbidity Index come from
Medicare claims data. (†)The EPO acquisition costs are computed from Renal Dialysis Facilities Cost Report
Data for 2008. (*)We do not present the mean or standard deviation because extreme outliers in the cost
report data make those statistics unreliable. The national payment limit comes from quarterly Medicare
Part B ASP Drug Pricing Files for 2008 and 2009.

percentiles show potentially important heterogeneity in acquisition costs, even though the

drug was produced by a single manufacturer.38 As we discuss below in Section 5.2, there are

also nontrivial costs of administering EPO (another component of the marginal cost), which

are likely to vary across dialysis centers, but which are not well observed in the facility level

cost report data.

5 Empirical Implementation

We now describe how we adapt the model from Section 3 to the empirical application, and

how we recover the parameters of the empirical specification from the data. The model

extends to an environment with many providers, each treating many patients, under the

Reports/Renal-Facility-265-1994-form. CMS requires dialysis centers to submit detailed annual cost reports,
which include their total expenditures on EPO and the total number of units provided. From the total
expenditures (less any rebates) and total units, we compute the average acquisition cost per 1,000 units of
EPO for each center in the cost report data from 2008.

38These data also show meaningful differences in acquisition costs across dialysis centers within the same
chain. For example, the interquartile ranges are $0.22 for DaVita and $0.41 for Fresenius, which are smaller
but not trivial relative to the interquartile range of $0.92 (= 8.15 − 7.23) across all centers shown in Table
1.
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natural assumptions that the providers’ utility functions and the government’s objective

function are additively separable across patients.39 Therefore our earlier results can be

used to characterize optimal contracts in this setting. Below, we first develop the empirical

specification, then discuss identification and explain the approach used for estimation, and

finally present our parameter estimates.

5.1 Empirical Specification

For the empirical analysis, we assume a quadratic specification of the health function, h. This

captures the likely non-monotonicity of the effects of EPO, and yields simple, closed-form

expressions for the treatment amounts. However, this specification is not crucial because

h is nonparametrically identified up to location and scale, and our normative results are

invariant to the choice of both (see Appendix E.1). Hence the sign of the marginal effect

of treatment is identified (i.e., what dosages are health damaging on the margin).40 The

quadratic specification is as follows:

h(a; b, x) ≡ H − 1

2
[δa+ b− τ ′x]2. (9)

Here δ is a linear technology that converts the amount of EPO provided, a, into an increase

in hematocrit from the baseline level, b. The maximum health is achieved when δa+b equals

τ ′x. While the value of τ ′x could be interpreted as a medical target level for patients with

characteristics x, the estimated value should be interpreted with caution because the level

of τ (i.e., its location) is identified by functional form—unlike the marginal effects of x, a,

and b, and the shape of h. Finally, the health function includes a positive constant, H ≫ 0,

so that patient health enters positively into provider utility.41,42

With this quadratic specification, and with a constant marginal payment rate (p1) as in

the linear contracts that were in place during our study period, the provider’s first-order

39The static framework can be applied to multiple time periods if there are no dynamic effects of EPO
(as noted in Section 2), and if the government does not consider patient histories when setting payments.
This has always been the case when patient hematocrit levels are within the recommended range (i.e., not
above 39%), and our analysis restricts to observations in this range.

40 To be clear, a non-monotonic h is not necessary for our overall approach. Hence it would be equally
relevant for applications where treatments never damage health.

41We assume that H is sufficiently large such that h(0; b, x) > 0. This implies that the orderings of
the levels of u with respect to type parameters are the same as those of derivatives of u with respect to
type parameters. This kind of assumption is standard in screening models because it implies that only the
participation constraint of the lowest-action type will be binding, which simplifies characterization of the
optimal nonlinear contract.

42It is also worth noting that this specification is robust to certain alternatives, e.g., if providers were
partially motivated to minimize their deviations from any particular treatment level.
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(a) Observed dosages (b) Observed and predicted

Figure 2: Mean monthly dosages of EPO in relation to baseline level of hematocrit, and
predicted dosages from the estimated reduced form.

Notes: Means calculated by integer value of hematocrit, rounded down. Fitted values are predicted with the
estimated versions of the reduced form reported in Appendix Table A3.

condition (4) yields a simple linear solution for the chosen treatment amounts:

a∗(α, z; b, x, PL) =
τ ′x− b

δ
+

p1 − z

αδ2
. (10)

We assume interior solutions apply when estimating the model because, as seen in Section 4,

nearly all patients were given some amount of EPO. However, we allow for corner solutions

(i.e., a∗ = 0, which is the notion of exclusion) in the construction of the optimal contracts

and in the simulations presented in Section 6.

Equation (10) implies a globally linear relationship between the patient’s baseline hema-

tocrit and the amount of EPO provided. To examine this, Figure 2(a) plots average dosages

against the baseline hematocrit, separately for the first and last quarters in our data (when

the national payment rates were respectively $8.96 and $9.58 per 1,000 units). Average

dosages are monotonically decreasing in b, which is consistent with our model, but the rela-

tionship appears to be somewhat nonlinear, with a steeper slope at lower hematocrit levels.

When the payment rate was higher (2009Q4), average dosages are larger for patients with

low and medium hematocrit levels, which is also consistent with (10). However, the average

dosages decrease more rapidly, and are even slightly lower for patients with high hematocrit

levels, in contrast to the level shift that (10) would predict. While these aggregate plots do

not provide ceteris paribus comparisons, they suggest that certain nonlinearities absent from

(10) may be empirically relevant.

To capture those potential nonlinearities, our empirical specification adds flexibility in

relation to the patient’s baseline hematocrit. Specifically, we allow the model parameters to
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take different values when b is in different intervals, denoted by k. As a consequence, each

interval of baseline hematocrit can be treated separately in the estimation of the model. This

approach maintains the linear, closed-form solution, while having sufficient flexibility to fit

the nonlinearities quite well, as seen in panel (b) of Figure 2 (discussed further in Section 5.3).

To provide some interpretation for this flexibility in the parameters, allowing different values

of δ (i.e., δk) means that the productivity of EPO may depend on the baseline hematocrit,43

and the flexibility in τ (i.e., τk) means that the benefits and risks of EPO related to patient

characteristics may interact with the baseline hematocrit. There are also potentially different

distributions of (α, z) (i.e., Fk) for different values of b, which allows there to be different

altruism weights and marginal costs depending on the severity of a patient’s anemia.

Finally, to allow for unexplained variation from the econometrician’s perspective, we add

an independent, mean-zero shock, η. Additionally, as we make clear below, it is useful to

decompose the marginal cost as zik = µz + ζik. With these extensions to (10), the observed

dosage given by provider i to patient j in period t is

aijt =
τ ′kxjt − bjt

δk
+

p1t − [µz + ζik]

αikδ2k
+ ηijtk,

for a patient whose baseline hematocrit is in interval k. This is the empirical reduced form

for the observed dosages, which we take to the data. It can be rearranged to yield reduced-

form parameters and disturbances (structural parameters are in the body of the equation,

reduced-form parameters are below the brackets):

aijt =

[
−1

δk

]
︸ ︷︷ ︸

βk
1

bjt +

[
1

αikδ2k

]
︸ ︷︷ ︸

βk
2i

[p1t − µz]︸ ︷︷ ︸
p̃t

+
τ ′k
δk︸︷︷︸
βk′
3

xjt +

[
−ζik
αikδ2k

]
︸ ︷︷ ︸

νki

+ ηijtk︸︷︷︸
ϵkijt

. (11)

Thus, in each hematocrit interval, our reduced form is a linear regression model with a

random coefficient, βk
2i, and a random effect, νk

i . Globally, the reduced form is a piecewise

linear function, but it can be estimated separately within each interval.

5.2 Identification and Estimation

In this section, we explain the approach we take to identify and estimate the empirical model.

The structural parameters to be recovered are the scalars δk, the vectors τk, and the joint

distributions Fk(α, z), in each interval of baseline hematocrit, k = 1 . . . K. One parameter of

the joint distributions, µz, the mean of the marginal cost, is assumed to be the same across

43Because patients with lower baseline hematocrit are given higher dosages on average, this could approx-
imate diminishing returns, for example.

22



intervals. As can be seen from the reduced form (11), µz is not separately identified from

a constant term in τk.
44 To identify µz, we use external information on average per-unit

costs of acquisition and administration of EPO, described later in this section. The other

parameters are identified from the reduced-form estimates. The values of δk and τk follow

immediately from the coefficients βk
1 and βk

3 , given a value of µz. The joint distribution of α

and z in each interval, Fk, is identified from the joint distribution of the random coefficient

and random effect, βk
2 and νk, as discussed next .

Multiple approaches to recover Fk are possible. For efficiency and computational tractabil-

ity we use a parametric assumption, summarized as follows (details are in Appendix F). We

specify lnα and z to have a joint normal distribution, so that α has a lognormal distribution

with strictly positive support. Then in each hematocrit interval k, there are four unknown

parameters of the joint distribution, µα,k, σ
2
α,k, σαz,k, and σ2

z,k (while µz,k = µz is treated

as known from our external information on costs).45 Using Stein’s lemma (Stein, 1981) and

properties of the lognormal distribution, these parameters are identified by, and can be re-

covered analytically from, the first and second moments of the random coefficient (βk
2 ) and

random effect (νk) in the reduced form (11). Those moments are semiparametrically esti-

mated via an auxiliary regression of the residuals of (11), which is derived specifically for

this purpose and takes advantage of the panel structure of the data (see Appendix F).

While this parametric approach is tractable and efficient, Fk is in fact nonparametrically

identified under the assumption that the idiosyncratic shocks ηijtk (equivalently, ϵkijt) are

mean-independent of the observables b, p1, and x. To provide some intuition, an alternative

approach to recover the joint distribution of α and z would be to estimate (11) separately

for each provider (within each interval), using the large number of observations per dialysis

center. The resulting consistent estimates of βk
2i and νk

i for each provider would then yield

consistent estimates of αik and ζik, and so the empirical joint distribution of α and z could

be recovered for each interval k using standard nonparametric methods (see Appendix E.3

for further discussion). We do not pursue this approach because it would be computationally

intensive due to the large number of dialysis centers, and the resulting estimates would be

much noisier. However, we are able to assess and confirm a key aspect of our parametric

assumption about Fk, that a single, unimodal, distribution fits the heterogeneity across

dialysis centers (see Appendix K.3). Regardless, this assumption plays no role in the OLS

estimation of the mean reduced-form coefficients.

44Rearranging (11) and taking expectations, the intercept of the reduced form would be
τk,0 · δ−1

k − µz · δ−2
k E[α−1

k ], where τk,0 is the constant term in τk. Hence because τk,0 and µz only appear in
the intercept, only their weighted sum is identified.

45We follow the convention of using µα and σα (instead of µlnα and σlnα) to respectively denote the mean
and standard deviation of lnα.
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Separately, as noted earlier, the quadratic specification that yields a linear reduced form is

not crucial for the identification of our model or the derivation of the optimal contracts. As we

show in Appendix E.1, the health function is nonparametrically identified given a single-index

assumption (e.g., δa+ b− τ ′x) and an exclusion restriction on costs. So, most importantly,

the marginal effects of dosages on a provider’s utility and on the government’s objective are

identified under these general assumptions. These marginal effects fully characterize provider

behavior and the optimal contract (see Sections 3.2 and 3.3).

Next, given the empirical specification, the identification of the structural parameters

naturally depends on the consistency of the reduced-form estimates. We use OLS to estimate

the reduced form, so we are relying on the exogeneity of the observables, b, p1, and x. The

exogenous variation in the baseline hematocrit, b, comes from natural fluctuations within

patients over time. There is substantial variation in hematocrit levels from month to month,

and providers react to these fluctuations by adjusting dosages (see Section 2 and Appendix

K.2). While this natural variation drives our estimates of βk
1 (and hence δk), one possible

concern about the exogeneity of b and x would be selection of patients to providers, which

could make these variables correlated with the provider-level unobservables (i.e., βk
2 and νk,

which come from αik and zik). We assess this by comparing fixed effects estimates of (11)

with our OLS results, and find that the coefficient estimates are quite similar (see Section

5.3 for those results and further discussion).

As for the payment rate, p1, it was set nationally by Medicare each quarter, based on

the average sales price of EPO from roughly six months earlier (see Section 2). An individ-

ual dialysis center could not affect the national average price, but if demand shocks were

substantially correlated across centers and over time, there could be a correlation between

p1t and ϵkijt. We accordingly include a year dummy for 2009 and month dummies for each

calendar month, which would address both secular and cyclical trends in demand. Assum-

ing this absorbs the effects of systematic demand shocks from dialysis centers, the other

potential sources of variation in lagged prices that could generate exogenous variation in p1

would include supply shocks from the drug manufacturer, and demand shocks from other

purchasers of EPO.46

Finally, as noted earlier, we use external information on costs to determine the value of

the mean per-unit cost, µz. Given the high price of EPO, most of the cost is from acquisition

(i.e., purchasing the drug from a distributor). The Renal Dialysis Facility Cost Report Data

presented in Section 4 allows us to compute per-unit acquisition costs by facility and year,

and we use the median reported in Table 1, equal to $7.53 per 1,000 units, as the acquisition

46For example, EPO is also used extensively for chemotherapy patients and for surgery patients.
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Table 2: Reduced-Form Coefficient Estimates

Variable Interval of Baseline Hematocrit
(Coefficient) > 30 to 33, > 33 to 36, > 36 to 39

Baseline hematocrit -9.29 -6.32 -3.56
(βk

1 ) (0.25) (0.15) (0.12)

Reimbursement rate 9.53 6.39 3.92
(β̄k

2 ) (3.02) (2.13) (1.97)

Obs. in interval 231,702 405,019 283,024

Notes: Estimates are from separate regressions in each interval, estimated via OLS. Regressions also include:
age, sex, indicators for each value of the CCI, and month and year dummies. Standard errors in parentheses,
computed via cluster bootstrap (clustered on dialysis center) with 250 replications.

component of µz.
47 The cost of administering EPO is also non-trivial. Several time-and-

motion studies have been published to assess the cost of administering EPO, and we use

estimates from Schiller et al. (2008), which is the most thorough and relevant for our time

period. The results from that study imply an average cost of staff time and non-drug supplies

for administering EPO equal to $1.05 per 1,000 units (see Appendix G.1 for details). Adding

this to the acquisition cost, we set the value of µz equal to $8.58 per 1,000 units.

The reduced form is estimated separately in each hematocrit interval, k. This yields

estimates of βk
1 , β

k
3 , and the mean of βk

2 , denoted β̄k
2 . The auxiliary regression of the residuals

is also estimated separately in each interval, which yields estimates of the variances and

covariance of βk
2 and νk (see Appendix F). The hematocrit intervals we use for estimation

are three percentage points wide (e.g., 30 < bjt ≤ 33), which provides a good balance between

the flexibility of the specification and the precision of the estimates. The linear segments fit

the global relationship well (Figure 2b), while the key parameter estimates are sufficiently

precise (Tables 2 and 4).

5.3 Estimation Results

Our main estimates of the reduced-form coefficients on the baseline hematocrit (βk
1 ) and the

payment rate (β̄k
2 ) are shown in Table 2 (estimates of the coefficients on the other patient

characteristics are shown in Appendix Table A3). To interpret these coefficients, for example

47We use the median rather than the mean because it is less sensitive to extreme outliers in the cost
report data, which likely reflect data entry errors.
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Table 3: Robustness of Reduced-Form Estimates

Variable Provider Fixed Effects No Patient Observables Comorbidity Indicators
(Coefficient) > 30-33 > 33-36 > 36-39 > 30-33 > 33-36 > 36-39 > 30-33 > 33-36 > 36-39

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Baseline hematocrit -9.22 -6.51 -4.00 -9.61 -6.39 -3.46 -9.24 -6.32 -3.56
(βk

1 ) (0.19) (0.13) (0.12) (0.24) (0.15) (0.13) (0.24) (0.15) (0.13)

Reimbursement rate 9.42 5.99 4.67 9.81 6.13 4.26 9.40 6.09 4.08
(β̄k

2 ) (3.00) (1.95) (1.85) (3.20) (2.04) (1.92) (3.20) (2.03) (1.91)

Obs. in interval 231,702 405,019 283,024 231,702 405,019 283,024 231,702 405,019 283,024

Notes: Each column is a separate regression. Complete lists of variables and coefficient estimates for each regression appear in
Appendix Tables A3 and A4. Asymptotic standard errors in parentheses, clustered on dialysis center.

in the middle interval, a patient with one unit higher baseline hematocrit (say 35 vs. 34)

receives 6,320 less units of EPO per month on average. Also in that interval, a one dollar

increase in the payment rate (per 1,000 units) would induce providers to increase dosages by

6,390 units per month on average. The linear segments for the three intervals fit the global

relationship between the baseline hematocrit and the dosage very well, as shown earlier in

Figure 2(b). The average predictions from the linear regressions in each interval are very close

to the average observed doses, and there are no apparent discontinuities in the predictions

from one interval to the next.

Next we examine the robustness of our reduced-form estimates, as well as the assump-

tion of a common distribution for (α, z) across all dialysis centers. We start by estimating

the reduced form with provider-level fixed effects. The results, shown in Table 3, columns

1-3, are quite similar to our main estimates. This suggests that any patient selection on

time-invariant provider characteristics (i.e., α and z) does not affect the estimates substan-

tially. As described in Section 2, we believe the high travel costs associated with dialysis care

may limit this form of selection. Similarly, the robustness to provider fixed effects also sug-

gests that any heterogeneity across providers in their hematocrit targets (or other treatment

protocols) is not substantially affecting our estimates, because such heterogeneity would be

absorbed by the fixed effects. In addition, beyond these endogeneity concerns, it is worth

noting that the fixed effects allow for an arbitrary distribution of the provider-level unob-

servable, νk, including any correlation structure among these effects within chains. Hence,

our key coefficient estimates do not appear to be sensitive to the assumed independence

across facilities that comes with our parametric specification of Fk(α, z).

The rest of Table 3 shows the robustness of these coefficients under alternative specifi-

cations of the patient characteristics x (age, sex, and the CCI).48 The regressions reported

48Appendix K.1 contains the full estimation results for these alternative specifications, as well as the
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in columns 4-6 omit these characteristics entirely, while those in columns 7-9 use separate

indicators for each comorbidity rather than for each value of the comorbidity index.49 The

similarity of the key coefficients across these specifications provides some reassurance against

misspecification concerns.

We assess the assumption that one common distribution fits the provider-level hetero-

geneity across all dialysis centers in Appendix K.3. Appendix Figure A7 nonparametrically

plots the distributions of the reduced-form residuals from each hematocrit interval. They

appear to be unimodal; by contrast, if there was extremely strong dependence in α or z

within chains we might instead expect to see more modes (e.g., one each for the large na-

tional chains, DaVita and Fresenius, and a third for the rest). We also formally test the

unimodality of these distributions, and the assumption is not rejected. Hence we can be

fairly confident that any dependence within chains is not so strong that it would invalidate

our use of a single, unimodal distribution to describe the heterogeneity across providers.

Our estimates of the structural parameters are presented in Table 4. The estimated values

of δk, the effect of EPO, can be compared with results from the medical literature, and they

seem to be generally consistent with those results. For example, our estimate in the middle

interval implies that 1,000 units of EPO raises hematocrit by 0.158 percentage points. This,

and the estimates in the other intervals, are similar to estimates of the average productivity

of EPO that can be derived from results from clinical trials.50 Also, the larger values of

δk in intervals with higher baseline hematocrit are consistent with diminishing marginal

productivity of the drug, because patients with higher baseline hematocrit are given less

EPO on average (see Figure 2a). The estimates of τk must be interpreted more cautiously

because, as noted earlier, their identification is dependent on functional form. While the

implied patient-level hematocrit targets (τ ′kxijt) fall within the defined range for hematocrit

(i.e., 0 to 100), the means reported in Table 4 are above what might be expected based on

clinical guidelines.51 However, as discussed earlier and detailed in Appendix E.1, our main

results for the main specification with asymptotic standard errors clustered on chains rather than facilities.
49We prefer our main specification with indicators for each value of the CCI, because it is a parsimonious

way to include interactions among comorbidities (e.g., the coefficient on CCI=2 gives the effect of having
two comorbidities). Moreover, the CCI has been validated for dialysis patients (Beddhu et al., 2000).

50For example, Tonelli et al. (2003) construct a dose-response curve based on results from five clinical trials,
which indicates average productivities ranging from 0.135 to 0.241 depending on the resulting hematocrit
level. Also, the average dosages and the average increases from initial hemoglobin levels reported in Singh
et al. (2006) imply average productivities of 0.143 and 0.167 (on hematocrit) for the two treatment groups in
that study (our calculations). More recently, Eliason et al. (2022) have estimated a local average treatment
effect of EPO on hematocrit, equal to to 0.64, using facility elevation as an instrument.

51For example, guidelines issued by the National Kidney Foundation in 2007 recommended the use of
hemoglobin targets from 11 to 12 g/dl, and not greater than 13 g/dl (NKF-KDOQI, 2007), which is com-
parable to hematocrit targets from 33 to 36 percent, and not greater than 39 percent. These could be
interpreted as possible values for the average target in our model (τ ′kx̄k), assuming the guidelines ignored
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Table 4: Structural Parameter Estimates

Interval of Baseline Hematocrit
Parameter > 30 to 33 > 33 to 36 > 36 to 39

Increase in hematocrit from 1000u EPO
δk 0.108 0.158 0.281

(0.003) (0.004) (0.009)

Mean implied hematocrit target
τ ′kx̄ 40.2 43.7 50.2

(0.3) (0.3) (0.6)

Distribution of altruism and marginal cost types
µα,k 3.54 2.91 2.99

(0.73) (0.83) (1.42)

σ2
α,k 2.68 2.15 3.64

(0.80) (0.94) (1.43)

σαz,k -0.343 -0.436 -0.371
(0.014) (0.062) (0.011)

σ2
z,k 0.472 0.858 0.332

(0.162) (0.396) (0.073)

Obs. 231,702 405,019 283,024

Notes: Standard errors in parentheses, computed via cluster bootstrap (clustered on dialysis center) with
250 replications. Mean marginal cost, µz, is set at $8.58/1000u EPO.

results depend on the marginal effects of EPO and the distribution of provider types, which

are nonparametrically identified.

Turning to the distribution of provider types, the parameters µα,k represent the means

(and medians) of the normal distributions of lnα for each interval of baseline hematocrit.

The value of these parameters decreases across the intervals, which could be interpreted

as a lower concern for the health of patients with less severe anemia. The median of α is

exp(µα,k), so for example the median in the middle interval is 18.4. This gives a marginal

rate of substitution between net revenue and patient health, so if the payment rate were

one dollar above the marginal cost for a provider with this degree of altruism, that provider

the cost of providing EPO.
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would administer a medically excessive dosage such that h′(a; b, x) = −1/18.4. This would

be 2,180 units (3.9%) more than the amount that maximizes patient health.52 The variance

of the log of altruism, σ2
α,k, is significantly greater than zero at conventional significance

levels in all baseline hematocrit intervals, meaning that altruism itself varies significantly

in each interval.53 The marginal cost, z, is denominated in dollars, so the estimates of σ2
z,k

imply standard deviations of marginal costs equal to $0.69, $0.93, and $0.58, respectively, in
the three intervals. For comparison, the interquartile range of acquisition costs reported in

Table 1 is $0.92.
It is also possible to make inferences about the values of α and z for individual providers,

using the estimated distribution of types and the observed dosages and covariates. Specif-

ically, we can compute a posterior distribution of α and z for each provider, based on the

dosages administered to their patients. This is useful because we can then compare the

posterior means across different groups of providers, such as the two large chains vs. others,

or non-profits vs. for-profits, for example. The details are presented in Appendix H, but

the overall results are consistent with widely held views about this industry. The posterior

means of α are somewhat lower among DaVita and Fresenius facilities, on average, compared

to other providers, as are the posterior means of z. Similarly, the posterior means of α and

z are somewhat lower among for-profits compared to non-profits. These differences however

are modest in comparison with the overall variation across providers.

Finally, to examine the importance of altruism versus marginal cost heterogeneity, we

simulate the distributions of dosages that would occur if only one of these dimensions were to

vary.54 The results indicate that heterogeneity in altruism accounts for more of the variation

in dosages. For example, in the middle interval, the standard deviation of dosages is 9.8

thousand units of EPO when both altruism and marginal cost are allowed to vary. When

only altruism varies, the standard deviation falls to 6.3. When only marginal cost varies,

the standard deviation is 1.6, which is smaller but not negligible. As we show in Section 6.3,

the optimal nonlinear contract targets heterogeneity in altruism more than heterogeneity in

marginal costs, but both are relevant.

52From (9), h′(a; b, x) = −(δa + b − τ ′x)δ. Taking the difference between dosages that yield h′ = 0 and
h′ = −1/18.4 gives −(δ∆a)δ = −1/18.4, which solves to ∆a = 18.4−1 × 0.158−2 = 2.177. The health-
maximizing dosage for a patient with median baseline hematocrit and average characteristics is 56,300 units.

53Given that σ2
α,k is a known, simple, transformation of V (β2i) (the variance of the reduced-form coefficient

on the reimbursement rate), this is fairly direct evidence of altruism heterogeneity among providers.
54Specifically, we simulate dosages allowing altruism to vary according to its marginal distribution, fixing

the marginal cost at its mean value, and we simulate dosages allowing marginal cost to vary according to
its marginal distribution, fixing altruism at its mean value. The simulations are done separately for each
interval, using the median b and mean x in the interval.
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6 Quantitative Results: Optimal Contracts

This section presents our main empirical results: optimal contracts obtained using the esti-

mated model parameters, and simulated outcomes under those contracts. The improvements

we find indicate the potential value of adopting nonlinear payment contracts for certain

health care services.

Two final steps are required to compute the optimal contracts.55 First, we must truncate

the estimated type distributions to render them compact, as in the model. We remove the

bottom and top 0.5 percent from the symmetric marginal distributions of zk and the bottom

0.5 percent from the asymmetric marginal distributions of αk, and we remove an amount

from the top of the latter distribution so that the means of δ−2
k α−1

k still equal the estimated

values of β̄k
2 .

56 Second, we must fix a value for αg, the weight placed by the government on

health relative to money. We do not assume the observed contract is optimal—indeed, we

prove that it is not possible to rationalize the observed payment rate with any value of αg,

given our parameter estimates (see Appendix B), so this parameter should not be recovered

from the observed payment rates. Instead, we calibrate a value for αg based on the value of a

statistical life year, information on the relationship between hematocrit levels and mortality

risk taken from clinical trials on EPO (see Appendix G.2). The resulting value of 52.6 is

above the median value of α among the providers, meaning that the principal places more

weight on patient health than do most agents.

Below, we first present the optimal contracts and resulting dosages in detail (Section

6.1). We compare the optimal nonlinear contracts with the observed contract, and with

optimal linear contracts57 also computed using the estimated model parameters.58 The

optimal contracts are defined for each b and x—broadly analogous to risk adjustment—so

we present the contracts for the median value of baseline hematocrit in each interval, using

the mean patient characteristics from each interval. We then compare the outcomes under

these contracts, to examine the gains from optimal contracting (Section 6.2). Finally, we

show how the nonlinear contract screens among the different dimensions of physician types

(Section 6.3).

55See Appendix D for computational details. Also, we assess the regularity condition, that no provider
types’ supply curves intersect the marginal payment curve under the optimal nonlinear contract more than
once, and find that it is not violated (Appendix I).

56Our results are not very sensitive to the choice of truncation points (see footnote 65).
57We show how to solve for optimal linear contracts in Appendix A.
58We set the η shock equal to zero in all simulations.
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Figure 3: Treatment and payment amounts under observed and optimal contracts, for pa-
tients with median severity of anemia.

Notes: Figure plots treatment and payment amounts under the optimal nonlinear contract (blue, solid lines)
for patients with median baseline hematocrit and mean characteristics in the middle hematocrit interval.
Results with the optimal linear contract (red, dashed lines) and observed contract (green, dotted lines) are
shown for comparison. Panel (a) plots the payment amounts, panel (b) plots marginal payments, and panel
(c) plots the distribution of treatment amounts.
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6.1 Optimal Contracts and Distributions of Dosages

We start with the contract for a patient with the median hematocrit level and the mean

characteristics in the middle interval. Figure 3 plots the total payments (panel a), the

marginal payments (panel b), and the distributions of treatment amounts (panel c), with

the optimal nonlinear contract in blue solid lines, the optimal linear contract in red dashed

lines, and the observed contract in green dotted lines. For the observed contract, we use the

mean of the payment rates in our sample, equal to $9.26. All three contracts pay $0 for zero

provision. This occurs because the optimal contracts exclude some physicians (i.e., some

types provide zero dosages in equilibrium), and so they use the same intercept of $0 as the

observed contract.59

For positive treatment amounts, the total payments (panel a) from the optimal nonlinear

contract are lower than from the observed contract, and may be higher or lower than the

total payments from the optimal linear contract, depending on the treatment amount. The

differences in these total payments can be non-trivial: for 45 thousand units, for example,

the nonlinear contract would pay $383.77, the linear contract would pay $353.60, and the

observed contract would pay $416.70, per month. The marginal payment (panel b) in the

nonlinear contract is roughly constant below 40 thousand units, where it lies between the

fixed marginal rates of the observed and linear contracts. However, most dosages induced by

the nonlinear contract are between 40 and 55 thousand units, where the marginal payment

changes substantially, falling from above $8 to about $2 per 1,000 units.

The gray shaded area in panel c indicates medically excessive dosages, i.e., treatment

amounts with a negative marginal product. This plot also includes the distribution of treat-

ment amounts in the full-information solution for comparison (black, dashed line), which

naturally lies strictly below the health-damaging treatment amounts. It is readily apparent

that the treatment amounts under the observed contract are typically too high, exceeding

the point where the marginal product becomes negative. This accords with concerns that

were raised about high payment rates encouraging medically excessive (not just economi-

cally excessive) provision of EPO. The optimal linear contract offers a lower payment rate,

so the treatment amounts under this contract are less than those under the observed con-

tract. However, it does not eliminate health-damaging amounts, which still occur with 19

percent of providers (see Table 5). That is because, as noted in Section 3.2, any providers

with marginal costs below the payment rate will be induced to provide dosages that yield

59The reservation utility u is set equal to the lowest utility obtained under the observed contract. A very
small share of physicians (0.2%) are excluded in the simulation of the observed contract, which fixes u at
the utility of a treatment amount of zero and zero payment, for a type with the lowest degree of altruism
(see Appendix A.2).
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Figure 4: CDFs of deviations from full-information treatment amounts, for patients with
median severity of anemia.

Notes: Figure plots the CDFs of the deviations from full-information treatment amounts under the optimal
nonlinear contract (blue, solid line), optimal linear contract (red, dashed line), and baseline contract (green,
dotted line), for patients with median baseline hematocrit and mean characteristics in the middle hematocrit
interval.

a negative marginal product of health, regardless of their degrees of altruism. Because the

linear contract has only a single marginal payment, the government accepts these excessive

dosages in order to avoid further underprovision by other providers with high marginal costs.

Next, to directly examine over- and underprovision, Figure 4 plots the distributions

(across provider types) of the deviations of the treatment amounts provided under each

contract from their full information amounts.60 Overprovision is nearly universal with the

observed contract (95.3% of provider types), and it remains very common with the optimal

linear contract (74.3% of provider types). In other words, under the optimal linear contract,

most providers still administer dosages where the marginal benefit to the principal is below

the net marginal cost for the agent. By contrast, there is no economic overprovision with

the optimal nonlinear contract: the highest treatment amount equals the maximum in the

full-information allocation, and all other treatment amounts are distorted downward (this

is a standard result; see Appendix C.3). This further indicates the value of having flexible

marginal incentives, because any overprovision is strictly dominated by underprovision in an

60For example, the deviations under the optimal nonlinear contract are a∗SB(α, z) − a∗FI(α, z), where
a∗SB(α, z) is the equilibrium treatment amount provided by type (α, z) under the second-best and a∗FI(α, z)
is defined in (3).
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Figure 5: Marginal payments in optimal nonlinear contracts for patients with median severity
of anemia in each estimation interval.

Notes: Figure plots marginal payments under the optimal nonlinear contracts for patients with median
baseline hematocrit and mean characteristics in the lowest (green, dotted line), middle (blue, solid line),
and highest (red, dashed line) baseline hematocrit intervals. Each plot extends up to the maximum dosage
provided in equilibrium, which naturally differs with these characteristics.

equal amount, which yields the same health at lower cost.

We now turn to the examples from the low and high hematocrit intervals, to examine how

the optimal nonlinear contracts change with the patient’s need for treatment. Figure 5 plots

the marginal payments in the optimal nonlinear contracts for a baseline hematocrit of 32.0

(green, dotted line) and 37.4 (red, dashed line), along with the contract for the median level

of 34.8 (blue, solid line) discussed above. In all cases the payment rate is fairly constant until

at least 40 thousand units, and is somewhat close to the observed reimbursement rate. It then

drops rapidly, from above $8 per 1,000 units to below $3. However this drop in the marginal

payment rate occurs at lower dosages for patients with higher baseline hematocrit (red,

dashed line), who need less EPO. Also, notably, the reduction is more gradual for patients

with lower baseline hematocrit (green, dotted line), which would induce greater variation in

dosages. The fact that these optimal nonlinear contracts differ across the intervals provides

a useful insight for policy, which cannot be obtained without computing the unconstrained

optimal contracts. For example, the optimal contracts could be approximated with a set

of tiered payment rates, where the number of tiers and their levels depended on patient

characteristics.
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Table 5: Summary of Outcomes under Alternative Contracts in Each Hematocrit Interval

Mean Mean Std. Dev. Share Med. Share Gain in
Contract Payment Dosage Dosage Excessive Overprov. Govt. Obj.

Baseline hematocrit >30 to 33
Observed 740 79.9 12.9 82% 98%
Optimal Linear 409 60.5 20.6 0% 64% $184
Optimal Nonlinear 387 54.6 12.9 0% 0% $219

Baseline hematocrit >33 to 36
Observed 542 58.6 9.8 75% 95%
Optimal Linear 396 50.4 11.8 19% 74% $98
Optimal Nonlinear 393 47.1 7.2 0% 0% $125

Baseline hematocrit >36 to 39
Observed 437 47.2 5.3 86% 97%
Optimal Linear 383 44.6 5.1 46% 87% $60
Optimal Nonlinear 384 42.9 2.5 0% 0% $88

Note: Table shows summary statistics of outcomes occurring under the observed, optimal linear, and optimal
nonlinear contracts for patients with median baseline hematocrit and mean characteristics in each baseline
hematocrit interval. Mean and SD of dosage are in 1,000 units/month. Medically excessive dosages are those
that damage health, on the margin, while overprovision refers to economically excessive amounts. The gain
in the government objective is computed relative to the observed payment contract.

6.2 Outcomes under Optimal Contracts

Next we consider the outcomes that occur under these contracts, summarized in Table 5. The

mean dosages and payments are lower under the optimal contracts than under the observed

contract. In all cases, the dosages are lowest under the optimal nonlinear contract, as are

the payments in two of the three cases. For the median hematocrit, for example, the mean

monthly dosage is 11.5 thousand units lower and the mean monthly payment is $149 lower

under the optimal nonlinear contract compared to the observed contract.61

Because the medical need is held constant in each example (i.e., b and x are fixed), the

variation in dosages indicates the extent to which these contracts address the unobserved

heterogeneity across providers. Compared to the observed contract, the optimal nonlinear

contract reduces the standard deviation of dosages by 27% and 53% at the medium and high

61This reduction in expenditures does not include possible changes in “downstream” medical care, such
as transfusions and hospitalizations, which could be affected by changes in dosages of EPO. Making a rough
calculation with estimates from other sources, we find that these changes would be predicted to yield an
additional net savings of $27 per patient per month (see Appendix K.4 for details). This suggests that the
direct savings on EPO may be a somewhat conservative lower bound for the total savings.
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baseline hematocrit levels, respectively.62 By contrast, the optimal linear contract typically

does not reduce the variation in dosages, because it provides a constant marginal incentive,

just like the observed contract.63 For comparison, with full information the standard de-

viations would be much smaller (3.2, 1.3, and 0.4 thousand units for the low, middle, and

upper intervals, respectively). The variation that remains with full information reflects the

(in this case observable) heterogeneity in altruism and costs, which still affects the optimal

amounts, but without any distortions due to informational frictions.

The reduction in the mean and variation of dosages is clearly beneficial to patients. Un-

der the observed contract, around 80 percent of providers would give medically excessive

dosages to patients with these baseline hematocrit levels. The optimal linear contract does

not eliminate this obvious inefficiency: in the middle and upper intervals, respectively, 19

and 46 percent of providers would give medically excessive dosages to patients under this

contract. This inefficiency does not occur with the optimal nonlinear contract because treat-

ment amounts are below their full-information values, all of which are strictly below what

would be medically excessive (due to positive marginal costs of treatment and positive, finite,

altruism).

The last column of Table 5 shows the government’s gains from better contracting, by

calculating the increases in the government’s objective relative to its values under the ob-

served contract. This provides a summary measure, in dollars per patient per month, of the

potential benefit to the government (and by extension, the patients represented by the gov-

ernment) from the changes in outcomes discussed above.64 There are substantial gains from

using the optimal nonlinear contract, ranging from $88 to $219 (or roughly $1,050 to $2,600
per patient per year) in these examples.65 Compared to the mean monthly payments under

the observed contracts of $437 to $740, these gains would represent clear improvements for

the government and the patients it represents. The optimal linear contracts achieve 70 to

85 percent of the gains from optimal nonlinear contracts. The mean payments are similar,

but the mean dosages are higher under the linear contracts, and the excessive dosages that

62The optimal nonlinear contract does not reduce the standard deviation of dosages for the low baseline
hematocrit interval, because it excludes a nontrivial share of types, which places a point mass at zero.

63The optimal linear contract excludes more types in the bottom and middle intervals than it does in the
upper interval, which increases the variation relative to the observed contract.

64Aside from the fact that we consider the government’s objective, not social welfare, this is analogous to
standard measures of welfare changes, equivalent and compensating variation, which are equal here due to
the quasilinearity of the government’s objective. The constant H drops out from the differences shown here.

65 The gains to the government from using the optimal nonlinear contract instead of the observed contract
are very similar even when doubling or halving the truncation tail probabilities for the lower tail of α and
both tails of z (we continue to truncate the upper tail of α asymmetrically to maintain the estimated values
of β̄k

2 ). In the example from the middle hematocrit interval, the government gains from using the optimal
nonlinear contract would be $121 per patient per month when the doubling truncation tail probabilities and
$130 per patient per month when halving them.
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still occur reduce the average gains to health. We can also calculate the gains in the full

information scenario. Comparing them to the gains under the optimal contracts provides

a measure of the losses due to asymmetric information, which are substantial. The differ-

ences between the gains in the full information scenario and the best feasible gains under

the optimal nonlinear contract range from $1,750 to $3,740 per patient per month.

Given the reduction in variation in dosages (and the elimination of medically excessive

treatment amounts) achieved by better contracting, one might be curious about the per-

formance of a forcing contract. To examine this, we have computed the forcing contract

implementing the maximum dosage under the full-information allocation, and associated

gains to the government over the observed contract for the middle hematocrit interval.66 To

satisfy the voluntary participation constraint for all types, the payment under the forcing

contract is larger than even under the observed payment contract, leaving massive infor-

mation rents to “better” (i.e., higher-altruism and/or lower-cost) types. Accordingly, the

gain in the government objective over the observed contract is $24 per patient per month,

a fifth of that under the optimal nonlinear contract. This may not be surprising, as this

(and any other) forcing contract was in the set of contracts considered by the principal when

solving for the optimal unrestricted contract. The presence of asymmetric information is

quite important even when considering only dosages that are not medically excessive.

6.3 Multidimensional Screening in the Nonlinear Contract

Finally, we show how the flexible marginal incentives in a nonlinear contract allow the

government to better screen among the different dimensions of unobserved heterogeneity.

First note that with either the linear or nonlinear contract, the set of types that will provide

some treatment amount a (i.e., an isoquant) is a line in the support of (α, z), because the

provider’s first-order condition (4) rearranges to z = p(a) + h′(a)α. Isoquants under the

linear contract rotate around an intercept defined by the constant marginal incentive, while

those under the nonlinear contract may have different intercepts, associated with variable

marginal incentives (we discuss this in more detail in Appendix C.1). Using the case of the

median baseline hematocrit, Figure 6a plots isoquants under the full-information (dashed

lines) and second-best allocations (solid lines) for the 75th and 99.99th percentile treatment

amounts under the second best, which we respectively denote a1 and a2. The higher amount

(a2) is very close to the full-information maximum (ā∗FI) because there is no distortion at

the top (see Appendix C.3). The provider types that choose at least a1 or a2 lie below

(i.e., lower z and higher α) the corresponding isoquants. The isoquants under the optimal

66We focus on this treatment amount because it is the highest dosage the government would ever wish to
implement. See Appendix L for details about how we computed these results.
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Figure 6: Isoquants for the 75th percentile (a1) and 99.99th percentile (a2) treatment
amounts under the optimal nonlinear contract.

Notes: Figure plots isoquants in the type space for two fixed amounts: the 75th percentile (a1) and 99.99th
percentile (a2) provided under the optimal nonlinear contract. The solid lines are the isoquants for these
amounts under the optimal nonlinear contract (panel a) under the optimal linear contract (panel b). For
comparison, the isoquants for these amounts under full information are shown with dashed lines.

nonlinear contract are below the corresponding isoquants under full information because of

the downward distortions induced by the optimal contract, which are larger at the lower

amount (a1). This is in contrast to the optimal linear contract (panel b), which can result in

overprovision. In particular, under the linear contract the isoquant for a2 lies far above the

full-information isoquant, indicating that a considerable share of types provide more than

the full-information maximum (ā∗FI). (The virtual coincidence of the isoquants for a1 under

full information and the optimal linear contract is itself coincidental.)

One way to see how the nonlinear contract better screens among types is to project the set

of types choosing treatment amounts of at least some particular amount onto each axis. First,

under full information, there exist combinations of (α, z) such that all altruism types and

all cost types would provide at least a1, while only strict subsets of both dimensions would

provide at least a2. The optimal nonlinear contract discriminates more among altruism types

than cost types for a1, because all cost types would provide at least this amount while only

a strict subset of altruism types would. Also the optimal nonlinear contract gets quite close

to the full-information allocation for a2. The optimal linear contract discriminates far less

among types along either dimension because the isoquants rotate around a single intercept.

38



Hence the sets of altruism types and cost types that would provide at least a1 or a2 equal

the full ranges in each dimension. Thus the flexible incentives provided by the nonlinear

contract allow the government to better address the multidimensional heterogeneity, and we

learn that the optimal contract discriminates more on provider altruism.67 This points to the

value of using more flexible contracts for health care providers, who likely differ in multiple

ways that are unobservable to a payer.

7 Summary and Conclusions

In this paper we examine contracting in health care, a large sector of the economy where

asymmetric information is pervasive and where providers’ responses to incentives can have

important impacts on both health and costs. We specifically examine the provision to dialysis

patients of an important and expensive drug used to treat anemia.

By empirically applying results from the literature on screening models, we are able to

characterize optimal payment contracts, which in concept induce provision of the best feasi-

ble dosages of the drug. Health care providers are likely heterogeneous in multiple ways (as

are agents in many other applications), and our use of the demand profile approach natu-

rally accommodates this. Our results indicate there is significant asymmetric information,

and hence substantial potential for Medicare (and in principle other payers) to generate

considerable savings and improve patient outcomes via better contracting with providers.

We find that moving from the observed contract used by Medicare to the optimal contract

completely eliminates medically excessive dosages (given to the overwhelming majority of

patients under the observed contract) and reduces spending by 12%, 27%, and 48%, respec-

tively, for the lower, middle, and upper baseline hematocrit intervals, leading to substantial

gains from better contracting. Multiplying the gains in our examples by the total number of

patient-months in each interval to make a rough approximation, we find that the total gains

could be on the order of $300 million per year.68 To put this in context, Medicare spent

67 Given the importance of altruism it would be natural to ask whether the heterogeneity in cost types
matters. To assess this, we substantially reduced the variance of z from its baseline value, and recomputed
the optimal nonlinear contract in this counterfactual environment (see Appendix M). The government’s
gain from moving from the observed contract to the optimal nonlinear contract would be 10% higher when
using the baseline optimal nonlinear contract than it would be when instead the government moved to
the contract derived under the counterfactually low variance of z. That is, the government would have a
10% higher objective when designing the optimal payment policy to take into account both dimensions of
unobserved heterogeneity.

68To arrive at this number, we multiply the gains in each of our examples by the number of patient-months
in each interval, divide by two to get an annual average (because there are two years of data), and then
multiply by five (as we have a 20% sample of beneficiaries). These calculations use the median b and mean
x in each interval, and can thus be interpreted as the gains for a representative patient.
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almost $2 billion per year on EPO for ESRD patients during our study period. We also find

that there are substantial costs borne due to asymmetric information, ranging from $1,750
to $3,740 per patient per month.

This approach to contracting could prove particularly valuable in improving how Medi-

care pays for provider-administered drugs (through the Part B program), which is widely

acknowledged to be problematic with regard to both dosing and spending. While the gen-

eral nonlinear contracts we derive may seem complex, these results can provide guidance for

simple approximations of the optimal contracts, such as a set of tiered payment rates. More-

over, as Clemens et al. (2017) show, private insurers commonly benchmark their payment

contracts to Medicare for many services, so if Medicare adopted these new forms of contracts

private insurers might very well follow suit. This approach can also extend more broadly to

other forms of treatment. The key requirements are that medical decisions primarily relate

to the quantity of treatment, not the type of treatment, and that the quantity of treatment

is observable; both are likely satisfied in a wide variety of important applications. Combined

with the results in this paper, this suggests that further exploration by economists of optimal

contracting in health care, and other areas, could prove valuable to real world policymakers.
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A Optimal Linear Contract

A.1 Optimal Linear Contract when there is No Exclusion

In this section we solve for the optimal linear contract for the case where no physician types

are excluded in equilibrium, i.e., all physicians would choose strictly positive treatment

amounts. Although we allow for corner solutions for treatment amounts in our quantitative

results, in Section 6, the current exercise is useful because our proof that the observed pay-

ment rate cannot be rationalized draws on this result (see Appendix B). Note that, while we

use the more general h notation for the health production function when it simplifies expres-

sions, results here were obtained using the quadratic-loss parameterization of h, specified in

Section 5.

Using interior physician’s treatment choice functions (10), the government’s problem can

be written as

max
{(p0,p1)∈R2}

α∫
α

z∫
z

[αgh(a)− p0 − p1a
∗(α, z; p1)] f(α, z)dzdα (A1)

s.t.

u(a∗(α, z; p1);α, z, p0, p1) ≥ u, ∀(α, z) VP

a∗(α, z; p1) =
τ − b

δ
+

p1 − z

δ2α
, ∀(α, z) IC.

We can eliminate the participation constraints for all types but

(α̈, z̈) ≡ arg min
(α,z)

u(a∗(α, z; p1);α, z, p0, p1),

i.e., the lowest-utility type given linear contract (p0, p1).
1 Setting up the Lagrangian based

on the remaining participation constraint, we have

L =

α∫
α

z∫
z

[
αg

[
H − [p1 − z]2

2δ2α2

]
− p0 − p1

[
[τ − b]

δ
+

p1 − z

δ2α

]]
f(α, z)dzdα

+ µ

[
α̈H +

[p1 − z̈]2

2δ2α̈
+

[τ − b][p1 − z̈]

δ
+ p0 − u

]
.

1If h > 0 then (α̈, z̈) = (α, z), by the envelope condition.
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First-order conditions with respect to p0 and p1 yield the following system of equations:

∂L
∂p0

=

α∫
α

z∫
z

[−f(α, z)dzdα] + µ∗ = 0 ⇒ µ∗ = 1

∂L
∂p1

=

α∫
α

z∫
z

[
−αg

[
p∗1 − z

δ2α2

]
−
[
[τ − b]

δ
+

p∗1 − z

δ2α

]
− p∗1

δ2α

]
f(α, z)dzdα+ µ∗

[
p∗1 − z̈

δ2α̈
+

τ − b

δ

]
= 0.

Using µ∗ = 1, from the first equation, the second equation can be simplified further to

solve for p∗1:

α∫
α

z∫
z

[
αg[p

∗
1 − z]

δ2α2
+

2p∗1
δ2α

− z

δ2α

]
f(α, z)dzdα =

p∗1 − z̈

δ2α̈

⇒p∗1 =
αg E

[
z
α2

]
+ E

[
z
α

]
− z̈

α̈

αg E
[

1
α2

]
+2E

[
1
α

]
− 1

α̈

. (A2)

If desired, one could then characterize p∗0 in terms of p∗1, using the binding participation

constraint of (α̈, z̈).

A.2 Optimal Linear Contract when there is Exclusion

Let z̃0(α; p1) ≡ αδ[τ − b] + p1 denote the cost type indifferent between providing treatment

and not, given altruism type α and payment rate p1.
2 The government’s problem, allowing

for exclusion, is:

max
{(p0,p1)∈R2}

E [ug(a(α, z; p1); p0, p1)] =

α∫
α

z̃0(α,p1)∫
z

[αgh(a
∗(α, z; p1))− p0 − p1a

∗(α, z; p1)] f(α, z)dzdα

+

α∫
α

z∫
z̃0(α,p1)

[αgh(0)− p0] f(α, z)dzdα (A3)

s.t.

u(a∗(α, z; p1);α, z, p0, p1) ≥ u, ∀(α, z) VP

a∗(α, z; p1) =

 τ−b
δ

+ p1−z
δ2α

, ∀{(α, z) : z < z̃0(α, p1)}

0, ∀{(α, z) : z ≥ z̃0(α, p1)}
IC.

2Note that z̃0 ≡ z̃(α; p1, a = 0), where z̃ is defined in equation (A6), in Appendix C.2.
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(Note that, while we use the more general h notation for the health production function when

it simplifies expressions, results here were obtained using the quadratic-loss parameterization

of h, specified in Section 5.)

Note that the equilibrium utility of excluded type (α, z) is u(0;α, z, p0, p1) = αh(0) + p0,

i.e., it does not depend on z and is increasing in α; this, combined with the fact that the

treatment amount is increasing in α when h′(a) > 0 (which is satisfied at a = 0), implies

that only the participation constraint for the lowest-altruism type will bind. Setting up the

Lagrangian based on the lowest-altruism-type’s participation constraint, we have

L =

α∫
α

z̃0(α,p1)∫
z

[αgh(a
∗(α, z; p1))− p0 − p1a

∗(α, z; p1)] f(α, z)dzdα+

α∫
α

z∫
z̃0(α,p1)

[αgh(0)− p0] f(α, z)dzdα

+ µ [αh(0) + p0 − u] .

Differentiating with respect to p0, we obtain µ∗ = 1 and p∗0 = u− αh(0). Differentiating

with respect to p1, and simplifying a good bit,3 we obtain the following implicit expression

for p∗1:

α∫
α

z̃0(α,p∗1)∫
z

[
z[αg + α]

α2

]
f(α, z)dzdα−δ[τ−b]

α∫
α

z̃0(α,p∗1)∫
z

f(α, z)dzdα = p∗1

α∫
α

z̃0(α,p∗1)∫
z

[
αg + 2α

α2

]
f(α, z)dzdα.

(A4)

B Rationalizability of Observed Payment Rate

The model parameters governing physician behavior are identified without assuming opti-

mality of the observed payment contract. Given our use of physicians’ revealed preference to

identify these parameters, it is natural to consider whether a revealed preference approach

could also inform our value for αg. In this section, we show that there does not exist a value of

αg such that the optimal linear contract equals the sample mean payment rate, $9.26/1000u
at any of the baseline hematocrit levels considered in our results section, given the estimated

parameters. Put differently, the fact that we cannot use the observed payment contract to

back out a value of αg implies that we reject optimality of the observed payment contract;

this is in contrast to early work in the empirical contracts literature, which needed to as-

sume optimality of the observed regime to identify model parameters (e.g., Wolak (1994))

but similar to more recent work (e.g., Abito (2019)).

Unlike the case where there is no equilibrium exclusion under the optimal linear contract

3The details are tedious, and are available upon request.
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(see Appendix A.1), the payment rate under the optimal linear contract when there are

excluded types is only characterized via a cumbersome implicit expression (see Appendix

A.2), which is not ideal because, without further guidance, one would have to exhaustively

search through all possible values of αg to prove the assertion that there did not exist a value

of αg that could rationalize the observed payment rate. Therefore, we adopt an alternative

approach, which is to obtain a tractable expression for an upper bound of the optimal linear

payment rate, which we then show is below that in the data. (Note that, while we use the

more general h notation for the health production function when it simplifies expressions,

results here were obtained using the quadratic-loss parameterization of h, specified in Section

5.)

Let z̃0(α; p1) ≡ αδ[τ−b]+p1 denote the cost type indifferent between providing treatment

and not, given altruism type α and payment rate p1.
4 Let p∗1(αg; z̃

0(·, p∗1)) denote the solution
to (A4), where we assume p∗1(αg; z̃

0(·, p∗1)) > 0. The second argument indicates that the

correct cost type, which depends on p∗1, is used as the upper limit of integration for the inner

integral.

We first show in Proposition 1 that p∗1(αg; z̃
0(·, p∗1)) is increasing in αg. We then show

in Proposition 2 that p∗1(∞; z), i.e., the optimal linear payment rate with no exclusion and

infinite value of αg, bounds p
∗
1(∞; z̃0(·, p∗1)) from above. This is particularly useful because,

taking the limit of (A2) as αg → ∞, we have p∗1(∞; z) = E
[

z
α2

]
/E
[

1
α2

]
, which is a very

simple explicit expression that can be evaluated using only model primitives.

Proposition 1 (p∗1(αg; z̃
0(·, p∗1)) increasing in αg). The government’s choice of p∗1 will be

increasing in αg if p∗1 > 0 and the government’s objective exhibits complementarity between

αg and p1 (Vives, 2001, Theorem 2.3). Intuitively, if the government finds it worthwhile

to pay physicians to increase their treatment amounts, it does so due to the health benefit.

Increasing its valuation of this benefit, αg, would naturally increase the government’s “input”

choice, p1. Because the government’s objective is smooth, this complementarity takes the

form of a positive cross-partial derivative. We have

∂2 E [ug(α, z, p0, p1)]

∂αg∂p1
=

α∫
α

z̃0(α,p1)∫
z

[
∂h(a∗(α, z, p1))

∂a∗
∂a∗

∂p1

]
f(α, z)dzdα,

which is positive because the first-order condition of the government’s problem with respect

4Note that z̃0(α; p1) ≡ z̃(α; p1, a = 0), where z̃ is defined in equation (A6), in Appendix C.2. This is the
same definition as in Appendix A.2, and is reproduced here for convenience.
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to p1 returns (for p∗1 > 0)

αg

α∫
α

z̃0(α,p1)∫
z

[
∂h(a∗(α, z, p1))

∂a∗
∂a∗

∂p1

]
f(α, z)dzdα−

α∫
α

z̃0(α,p1)∫
z

[
a∗(α, z, p1) + p∗1

∂a∗

∂p1

]
f(α, z)dzdα = 0

⇒ αg

α∫
α

z̃0(α,p1)∫
z

[
∂h(a∗(α, z, p1))

∂a∗
∂a∗

∂p1

]
f(α, z)dzdα > 0

⇒
α∫

α

z̃0(α,p1)∫
z

[
∂h(a∗(α, z, p1))

∂a∗
∂a∗

∂p1

]
f(α, z)dzdα > 0,

where the second line obtains if p∗1 > 0 (as was assumed) and there is a positive measure of

non-excluded types.

Proposition 2 (p∗1(∞; z̃0(·, p∗1)) < p∗1(∞; z)). Taking the limit of (A4) as αg → ∞, and

after some manipulation and dropping the vanishing terms, we have

α∫
α

z̃0(α,p∗1)∫
z

z

α2
f(α, z)dzdα = p∗1

α∫
α

z̃0(α,p∗1)∫
z

1

α2
f(α, z)dzdα. (A5)

Treating z̃0 as a parameter, consider how an increase in z̃0 (towards z) would affect p∗1 defined

in (A5). The derivative of the left side with respect to z̃0 is
α∫
α

z̃0(α,p∗1)

α2 f(α, z̃0(α, p∗1))dα. The

derivative of the double-integral expression on the right side with respect to z̃0 is
α∫
α

1
α2f(α, z̃

0(α, p∗1))dα.

Because we have z̃0(·, ·) ≥ z > 1,5 the left side will increase more than the double integral on

the right side, meaning
∂p∗1
∂z̃0

> 0 and, therefore, p∗1(∞; z̃0(·, p∗1)) < p∗1(∞; z).

Table A1 shows that the upper bound derived above for the optimal linear payment rate

is lower than the observed payment rate, 9.26, for the median baseline HCT level in each

of the three baseline HCT intervals. Combining this with Propositions 1-2, there cannot

exist a value of αg that rationalizes the observed payment rate for any of these baseline

HCT levels. That is, p∗1(αg; z̃
0(·, p∗1)) ≤ p∗1(αg = ∞; z̃0(·, p∗1)) ≤ p∗1(αg = ∞; z̃0(·, p∗1) = z) =

E
[

z
α2

]
/E
[

1
α2

]
< 9.26.

5The lower bounds of the marginal cost type distribution for the low, medium, and high baseline HCT
intervals are, respectively, 6.81, 6.19, and 7.10 $/1000u EPO.

8



Table A1: Upper bound for optimal linear payment rate

Baseline HCT interval
30-33 33-36 36-39

p∗1(∞; z) 8.96 9.10 8.95
Note: p∗1(∞; z) = E

[
z
α2

]
/E
[

1
α2

]
.

C Model Details

C.1 Restrictiveness of Linear Contracts

Figure A1 illustrates how the two-dimensional physician types map into treatment amounts,

under an arbitrary linear contract and an arbitrary nonlinear contract. With either contract,

the set of types that will provide the treatment amount a is a line in the support of (α, z):

see that (4) rearranges to z = p(a)+h′(a)α. The figure plots two such isoquants for amounts

a1 and a2, where a2 is medically excessive.6 The immediately apparent difference between

the linear and nonlinear contracts is that with a linear contract (panel a), the intercept

of the isoquants is fixed at p1, while it can change with the nonlinear contract (panel b)

because the marginal payment can vary (e.g., p(a1) > p(a2)).
7 This suggests the difficulty

of designing a linear contract that induces appropriate treatment amounts. For example,

a linear contract would have difficulty avoiding medically excessive amounts because the

payment rate (p1) would have to be below the marginal cost of the lowest-cost type (z) to

avoid downward slopes, which would likely exclude a nontrivial share of higher-cost types.

Nonlinear contracts can avoid this particular tension because, as illustrated by the isoquant

for a2 in the right panel, the marginal payments for medically excessive amounts (e.g., p(a2))

can be set below the marginal cost of the lowest-cost type (z), which places such isoquants

entirely outside the support of (α, z).

C.2 Details for Solution of Optimal Nonlinear Contract

We now show how to express S in terms of the joint density f(α, z). It will be convenient

to define the cost type indifferent about choosing treatment a (given p):

z̃(α; p, a) ≡ p+ αh′(a). (A6)

6That is, h′(a2) < 0. Also note that the slope of the isoquants is h′(a), so downward slopes correspond
to medically excessive amounts.

7We set α = 0 only for this illustration, to show the intercept on the plot.
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altruism type α

co
st

ty
p
e
z

z
z

α α

p1 + h′(a2)α

p1 + h′(a1)α

(a) Linear contract

altruism type α

co
st

ty
p
e
z

z
z

α α

p(a1) + h′(a1)α

p(a2) + h′(a2)α

(b) Nonlinear contract

Figure A1: Isoquants for example contracts.

Notes: Figure plots isoquant curves in the type space for an example linear contract (left), which has
a constant payment rate of p1, and an example nonlinear contract (right), which has a variable marginal
payment, given by the function p, where p1 = p(a1) > p(a2). The treatment amounts are such that h′(a1) > 0
and h′(a2) < 0.

Note that z̃ has intercept p and slope of h′(a), both of which must be non-negative at an

optimal solution p∗(a).8 We also define α̃(p, a) = z−p(a)
h′(a)

as the altruism type satisfying

z̃(α̃) = z. Suppose that z̃(α) ≥ z. As Figure A2 shows, there are two cases, corresponding

to α̃. If α̃ ≥ α, as depicted on the left, then

S(p, a) = Pr{αh′(a) + p︸ ︷︷ ︸
z̃(α;p,a)

≥ z} =

α∫
α

z̃(α;p,a)∫
z

f(α, z)dzdα, (A7)

where the types choosing at least a are in the green region. Otherwise, as depicted on the

right, we have α̃ ∈ [α, α), which means that all cost types with altruism types of at least α̃

8If p∗ < 0 then the government would not seek to induce the physician to increase their treatment
amount from autarky. If h′ < 0 at the optimum, the government could save money and improve health by
paying for a lower amount.
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Figure A2: α̃ cases

z̃(α)

z

z

α α

p(a) + αh′(a)

z̃(α)

z

z

α α

p(a) + αh′(a)

α̃

will choose at least the level of treatment under consideration.9 Thus, we have

S(p, a) =

α̃(p,a)∫
α

z̃(α;p,a)∫
z

f(α, z)dzdα + [1− Fα(α̃)], (A8)

where Fα denotes the marginal CDF of α.

To solve for p∗ using (8), we also need to differentiate S above with respect to (the

parameter) p. If α̃ ≥ α, we have

∂S(p, a)

∂p
=

α∫
α

f(α, z̃(α; p, a))
∂z̃(α; p, a)

∂p︸ ︷︷ ︸
1

dα. (A9)

If α̃ < α, we have

∂S(p, a)

∂p
=

α̃∫
α

f(α, z̃(α; p, a))dα. (A10)

Note that both S(p, a) and ∂S(p,a)
∂p

are continuous at α = α̃(p, a). The solution p∗ is then

obtained by solving (8) for p∗ for each a ∈ A.10

9There is a trivial third case, where α̃(p, a) < α; in this case, S(p, a) = 1 and ∂S(p,a)
∂p = 0.

10Although not depicted in Figure A2, when α̃(p, a) ≥ α, it is possible that z̃(α) < z. Here, the integration
limits for α must be adapted to account for z̃(α) crossing the α axis from below. Let α̌(p, a) ≡ z−p

h′(a) denote

the altruism type satisfying z̃(α̌) = z. (Note that the condition z̃(α) < z is equivalent to α̌(p, a) > α.) There
are two subcases. First, if α̌(p, a) > α, then even the most altruistic physician type would not provide the

level of treatment under consideration at marginal transfer p, meaning S(p, a) = 0 and ∂S(p,a)
∂p = 0. Second,

11



C.3 Intuition and Normative Aspects of the Optimal Contract

We can divide both sides of (8) by p∗(a) and ∂S(p∗(a),a)
∂p

to obtain the expression

αgh
′(a)− p∗(a)

p∗(a)
=

1

η(a)
, (A13)

where η(a) ≡ ∂S(p∗(a),a)
∂p

p∗(a)
S(p∗(a),a)

is the elasticity of supply at a. Note the similarity of the

expression in (A13) to the Lerner Index for monopoly pricing, i.e., p−c′

p
= 1

η
, where p and

c′ are, respectively, the marginal price and marginal cost and η is the elasticity of demand.

Our expression differs from that because the government is a monopsonist and, instead of a

marginal cost of production c′, the government has a marginal valuation of treatment, αgh
′.

Intuitively, the principal’s objective is lower (i.e., it extracts less surplus) where supply is

more responsive to price changes (i.e., the elasticity of supply is larger).

We now turn to the normative properties of the second-best allocation. To analyze this,

let i index a type that is marginal at a, i.e., αih
′(a)− zi + p∗(a) = 0. Using this type’s first

order condition to eliminate p∗(a) from (8) and rearranging, we obtain

αgh
′(a)︸ ︷︷ ︸

Principal’s MB

= zi − αih
′(a)︸ ︷︷ ︸

Agent’s net MC

+
S(p∗(a), a)
∂S(p∗(a),a)

∂p︸ ︷︷ ︸
distortion

, (A14)

i.e., at the second-best equilibrium allocation, the principal’s marginal benefit of providing

a equals the agent’s marginal net cost plus a term representing the distortion from the

first-best.

We can use (A14) to show that the allocation under the optimal nonlinear contract

will be downward-distorted from the first-best for all but the highest-amount type, (α, z).11

Equivalently, for any amount a < a∗FI, fewer types choose a in the second-best because they

if α̌(p, a) ∈ (α, α] then, if α̃ ≥ α then (A7) becomes

S(p, a) =

α∫
α̌

z̃(α;p,a)∫
z

f(α, z)dzdα, (A11)

and if, instead, α̃ ∈ [α, α), then (A8) becomes

S(p, a) =

α̃(p,a)∫
α̌

z̃(α;p,a)∫
z

f(α, z)dzdα+ [1− Fα(α̃)]. (A12)

11Recall that at an interior solution under the optimal linear contract a∗ is increasing in α and decreasing
in z when the regularity condition holds.

12



are being distorted downwards. To see this, first recall that S(p(a), a) is the probability the

physician would choose at least a. Hence, the numerator of the distortion, S(p∗(a), a), is

strictly positive for all but the maximum treatment amount, which is only provided by the

highest-amount type (which has a measure of zero). Also the denominator of the distortion,
∂S(p∗(a),a)

∂p(a)
, is positive because the probability in (6) increases with p(a). Hence the right side

of (A14) is larger than the right side of (3) for all but the highest-amount type. Because

h is strictly concave, the second-best treatment amount is therefore below the first-best

amount for all but the maximum treatment amount. S(p∗(a), a) increases as we consider

lower dosages, and the distortion typically increases, as well.

As noted by Goldman et al. (1984), this result is very similar to that of Ramsey (1927),

who studies a government tasked with raising a certain amount of revenue via distortionary

taxation of a variety of commodities. As is well known, the optimal second-best tax rates

are set in proportion to the inverse of the elasticity of demand, and the lower the elasticity

of demand, the closer to the first-best allocation for that commodity. Analogously here, the

lower the elasticity of supply, the smaller the distortion.

D Computational Details

D.1 Computation of Optimal Linear Contract

In practice, we numerically compute (p∗0, p
∗
1) by using the COBYLA algorithm in the R

implementation of the NLopt library (Powell, 1994; Johnson, 2018; R Core Team, 2019),

which allows for constrained optimization computation of the government’s problem under

a linear contract, where we embed exclusion into the physician’s choice of treatment amount

to solve:

max
{(p0,p1)∈R2}

E [ug(a(α, z; p1); p0, p1)] =

α∫
α

z∫
z

[αgh(a
∗(α, z; p1))− p0 − p1a

∗(α, z; p1)] f(α, z)dzdα

(A15)

s.t.

u(a∗(α, z; p0, p1);α, z, p0, p1) ≥ u, ∀(α, z) VP

a∗(α, z; p1) = max

{
0,

τ − b

δ
+

p1 − z

δ2α

}
, ∀(α, z) IC.

(Note that, while we use the more general h notation when it simplifies expressions, these

results were obtained using the quadratic-loss parameterization of h, in Section 5.) We

evaluate the participation constraints on a grid of (α, z), where there are 700 points of
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support for α, spanning [α, α], and 400 points of support for z, spanning [z, z].

D.2 Computation of Optimal Nonlinear Contract

We compute the optimal nonlinear contract by solving (8), the details of the constituent

parts of which are described in Appendix C.2, using the BBoptim subroutine contained in

the BB package in R (Varadhan and Gilbert, 2009). We solve (8) for a grid of 100 amounts.

The lowest value of the grid is zero because we allow for optimal exclusion via the nonlinear

contract. The maximum value of the grid is 0.01 below the full-information amount for

the highest-treatment-choice type; we use this as the maximum point due to the numerical

issues incumbent in evaluating derivatives at the upper corner of the treatment amount space

(which is the same as the upper bound of the full-information treatment amount space, due

to the downwards-distortion of equilibrium amounts under the optimal nonlinear contract).

Finally, we fit a spline to the grid of treatment amounts, which is what we use for our

quantitative results.

E Identification

Here we discuss the identification of the health function, h, and the joint distribution of

provider altruism and marginal cost functions. Identification is done separately for each

baseline hematocrit interval k; we suppress the k subscript in this appendix. The number

of time periods is fixed, but both the number of providers and the number of patients per

provider go to infinity. For an arbitrary provider i, there is rich variation in (b, x, p1, a), where

patient characteristics (b, x) vary between patients and over time, the (constant) marginal

reimbursement rate p1 varies over time, and observed treatment choices a are the sum of

a provider’s equilibrium treatment choice a∗i (p1, b, x) and an econometric error, η, which is

mean-independent of (b, x, p1): E(η|b, x, p1) = 0.12

We start by studying identification of more general specifications for the health function

and the provider type distribution than we use in our empirical implementation (specified in

Section 5). We maintain the assumption of quasilinear utility for providers. We also allow for

provider-level heterogeneity in the intercept of marginal cost functions, though here we also

allow for (homogeneous) convexity in marginal cost functions, which allows for cost functions

with heterogeneous convexity. We show that the marginal product of treatment on health,

h′(a; b, x), is identified to scale under a single-index specification for the arguments of h′,13

and, therefore, that the sign of the marginal effect of treatment on health is identified. The

12This is the same as in our empirical specification; see eq. (11).
13If not explicit, all derivatives are with respect to the dosage a, e.g., h′ = ∂h

∂a .
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scale parameter is the mean of provider altruism, µα.
14 We provide a test for µα > 0 and also

show identification of the joint distribution of altruism (given the scale µα) and marginal

cost functions. Finally, we also show that the choice of µα has no bearing on our main,

normative, results (Section E.2).

In Section E.3, we show the nonparametric identification of F (α, z), given the quadratic

specification of h and constant marginal cost function we use in our empirical specification.

E.1 Identification of h′, and Joint Distribution of Costs and Altruism

Consider the following general model of utility for arbitrary provider i:

Ui(h(a; b), P (a; p1), ci(a)),

where ∂Ui

∂h
≥ 0, ∂Ui

∂P
> 0, and ∂Ui

∂c
≤ 0, i.e., utility is weakly increasing in health, increasing

in money, and weakly decreasing in cost.15 The production function h and reimbursement

function P are common across providers, but the other functions may differ across providers.

The observed contract is linear in a, so we have P (a; p1) = p0 + p1a.
16 We also assume that

h is strictly concave in a and that ci is weakly convex in a. Based on our application, we

make two further assumptions. We assume that h′(0; b) > 0; if this condition did not hold

there would be no reason for the government to incentivize any provision of treatment at b.

We also assume ∂2h(a;b)
∂a∂b

< 0, i.e., the marginal product of dosage is lower, the higher is the

baseline hematocrit level.17

Our goal is to see what about utility and its argument functions (h, P , ci) is identified

from a∗i (p1, b) (which we sometimes write as a∗i for brevity), using the interior solution for

the provider’s optimal dosage and our assumptions about shape restrictions, i.e., about the

signs of first and second derivatives.

The first order condition to maximize utility is

∂Ui

∂P
p1 = − ∂Ui

∂c

∂ci(a
∗
i )

∂a
− ∂Ui

∂h

∂h(a∗i ; b)

∂a
,

14In a slight abuse of notation, µα denotes the mean of α in this section. This is in contrast to when we
describe our empirical specification or estimation results, where it refers to the mean of lnα.

15The identification of the effect of x on health is identical to identification of the effect of a on health,
so we suppress x for the remainder of this section.

16The intercept, p0 does not vary in the data so we do not specify it explicitly as an argument of P (·).
Also note that the observed payment contract does not vary with patient characteristics (in contrast to the
optimal payment contract), so we do not include those as arguments of P (·) here.

17This is consistent with our index specification, wherein both a and b affect the index entering h.
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which, when we divide by ∂Ui

∂P
> 0 to get a marginal rate of substitution, becomes

p1 = −
∂Ui

∂c
∂Ui

∂P

∂ci(a
∗
i )

∂a
−

∂Ui

∂h
∂Ui

∂P

∂h(a∗i ; b)

∂a
.

The utility level or the levels of any of the functions (h, P , ci) are not identified from the

optimality condition. Our approach will be to use a combination of assumptions and (pure)

normalizations to obtain values for ∂Ui

∂h
, ∂Ui

∂P
, ∂Ui

∂c
and then see what is identified about the

derivatives of the arguments to utility. Now we add one more assumption and three pure

normalizations. Assume quasilinear utility in P , which means we can normalize ∂Ui

∂P
= 1,

giving

p1 = − ∂Ui

∂c

∂ci(a
∗
i )

∂a
− ∂Ui

∂h

∂h(a∗i ; b)

∂a
.

Note that ∂Ui

∂c
is not separable from ∂ci

∂a
, so without loss of generality we can normalize

∂Ui

∂c
= −1. Similarly, ∂Ui

∂h
is not separable from

∂h(a∗i ;b)

∂a
, so we can normalize ∂Ui

∂h
= αi ≥ 0.18

With the normalizations, we now have

p1 =
∂ci(a

∗
i )

∂a
−αi

∂h(a∗i ; b)

∂a
,

which says that an interior treatment choice, a∗i (p1, b) equates the marginal reimbursement

rate p1 with the provider’s “net marginal cost of treatment”, i.e., their marginal cost of

treatment, net the provider’s marginal benefit from treatment coming from any improvement

in patient health (which may be negative if h′(a∗i ; b) < 0).

Polynomial approximation We show identification using a polynomial approximation to

the above FOC. Specifically, we approximate the marginal cost and marginal health benefit

using polynomials:

p1 =
[
c0i + c1i·a∗i + c2i·(a∗i )2 + · · ·

]︸ ︷︷ ︸
≈

∂ci(a
∗
i
)

∂a

−αi

[
h0 + h1a·a∗i + h1b·b+ h2a·(a∗i )2 + h2b·b2 + h2ab·a∗i ·b+ · · ·

]︸ ︷︷ ︸
≈αi

∂h(a∗
i
;b)

∂a

.

(A16)

For concreteness, consider the case in which both polynomials were of degree two. Higher-

degree polynomials would also be identified (as would be lower-degree ones, like those we

use in our empirical implementation). We assume c′i(a) = c0i + c1a + c2a
2, i.e., we allow

for heterogeneity in the intercept of marginal costs and also allow for non-constant marginal

18Note too that b is excluded from the cost function. This a natural assumption, because without it one
could not separate the cost and health functions.
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costs within provider.19

With an infinite number of patients per provider and the mean-independence of η, the

equilibrium treatment choices a∗i (p1, b) are identified for each observed value of (p1, b). With

the observed variation in (p1, b), this directly identifies the reduced-form parameters (θi, γi)

listed in braces under the rearranged version of (A16) below:

p1 = (c0i − αih0)︸ ︷︷ ︸
θi0

+(c1 − αih1a)︸ ︷︷ ︸
θi1

a∗i+(c2 − αih2a)︸ ︷︷ ︸
θi2

(a∗i )
2+(−αih1b)︸ ︷︷ ︸

γi
1

b+(−αih2b)︸ ︷︷ ︸
γi
2

b2+(−αih2ab)︸ ︷︷ ︸
γi
2a

a∗i b

(A17)

Given our polynomial approximation, our goal is to identify the parameters {c0i, αi} for

each provider, and the common parameters c1, c2, h0, h1a, h2a, h1b, h2b, h2ab.

First, the derivative of αih
′ with respect to b (which is approximated using the terms

αih1b, αih2b, and αih2ab) is identified from γi
1 and γi

2, because of the exclusion restriction

that b does not affect costs ci.

Our approach to identify the remaining parameters is to assume an index assumption on

the arguments of h(·), which links the derivative of h with respect to a to the derivative of

h with respect to b.20

We denote means of the reduced-form parameters taken across providers using ·: e.g.,

γ1 = −µαh1b (we use µα to denote the mean of α and µc0 to denote the mean of c0). Thus

we have

θ0 = µc0 − µαh0 (A18)

θ1 = c1 − µαh1a

θ2 = c2 − µαh2a

γ1 = −µαh1b

γ2 = −µαh2b

γ2a = −µαh2ab.

Identification then proceeds as follows:

1. Test any of the restrictions γ1 = 0, γ2 = 0, or γ2a = 0. If we reject then we can set the

19 Heterogeneity in the “intercept” of the marginal cost is fairly flexible. Regardless, it is not clear how to
separately identify heterogeneity in higher-degree terms of the marginal cost function (e.g., provider-specific
c1i); intuitively, we take averages across providers and c1i and a∗i would be correlated due to the optimality
of a∗i . Note that if c1 and other higher-order terms in the cost function are all equal to zero, then we have
c0i = zi (the latter being the constant marginal cost we use in our empirical implementation).

20There may be other sets of assumptions yielding identification; for example, identification may be
obtained by restricting c′(a) to be lower order. Therefore our approach should be viewed as sufficient but
not necessary.
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scale of α by choosing a positive value for µα.
21 We have identified (up to the scale of

µα) the parameters

h1b = −γ1/µα, h2b = −γ2/µα, h2ab = −γ2a/µα, αi = µαγ
i
1/γ1 for i = 1, . . . , n.

2. Invoke the single-index assumption, which means we can write h(a; b) = g(κaba + b),

where κab is a constant to be identified. As is standard in single-index models (see,

e.g., Ichimura, 1993; Härdle et al., 2004), the scale and location of the index are not

identified. Setting the coefficient on b equal to one fixes the scale and gives the index

a natural interpretation, in the units of the hematocrit level. We have set the location

to zero; note that this nonidentification means the intercept of τ ′x in our empirical

specification is identified from functional form.

The single-index assumption implies that

∂2h(a; b)

∂a2
= κab

∂2h(a; b)

∂a∂b
. (A19)

For example, in our empirical specification we have κab = δ.22 With our 2nd-degree

polynomial approximation, we have

∂2h(a; b)

∂a2
≈ h1a + 2h2a · a+ h2ab · b

∂2h(a; b)

∂a∂b
≈ h1b + 2h2b · b+ h2ab · a,

so, with the index assumption we have at an optimum

[h1a + 2h2a · a∗i + h2ab · b] = κab [h1b + 2h2b · b+ h2ab · a∗i ] . (A20)

Step 1 identified the parameters on the right of (A20), other than κab. We then need

to observe at least three vectors of (b, p1, a
∗
i (b, p1)) to exactly identify h1a, h2a, κab;

more than three would yield overidentification and, thus, better estimates. (The same

argument holds with higher-degree polynomials, but the number of points required

increases.)

We have now identified all of the parameters of h′ to scale, except for h0.

21Recall that αi is non-negative.
22In our empirical specification, we have h′(a; b, x) = δ [τ ′x− b− δa], so h1a = −δ2 and h1b = −δ.
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3. Using the second and third lines of (A18), we can identify c1 and c2:

c1 = θ1 + µαh1a

c2 = θ2 + µαh2a.

Note that these parameters are identified (and not just to scale).

4. Next, we use the average marginal cost µz (obtained from external data) to identify the

average intercept of the marginal cost function, µc0 , which combined with the average

intercept also identifies h0 to scale. The mean marginal cost (over providers, patients,

and time periods) is E [c0i + c1a
∗
i (b, p1) + c2(a

∗
i (b, p1))

2] = µc0 + c1a + c2a2. Equating

this with µz, we can solve for µc0 given that we have identified c1 and c2:

µc0 = µz −
[
c1a+ c2a2

]
.

Then, using the first line of (A18), we have

h0 =
µc0 − θ0

µα

,

i.e., h0 is identified to scale.

5. Finally, we identify c0i via the provider-specific intercept:

c0i = θi0+αih0 = θi0+
µαγ

i
1

γ1

µz −
[
θ0 + c1a+ c2a2

]
µα

= θi0+
γi
1

γ1

[
µz −

[
θ0 + c1a+ c2a2

]]
,

where all the terms on the right have been identified (and not just to scale).

Identification of the sign of h′ Here we note that the identification of the sign of h′

(i.e., whether treatments are health improving or health damaging on the margin) does not

rely on the scale normalization. Rearranging (A16), we have

c′i(a
∗
i (p1, b))− p1 = αih

′(a∗i (p1, b); b),

where (b, p1) are data varying within provider i and we have shown identification of c′i and

(trivially) a∗i (p1, b). Then if (as we find), αi > 0, we have

sign(c′i(a
∗
i (p1, b))− p1) = sign(h′(a∗i (p1, b); b)),
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i.e., we have identified the sign of h′ at a∗i (p1, b). In particular, consider the triplet (i, b, p1)

such that c′i(a
∗
i (p1, b)) = p1. For any such triplet, a∗i (p1, b) identifies the health-maximizing

treatment amount (i.e., where h′ = 0).

E.2 Robustness to the Choice of the Scale of α

We now show how the choice of µα does not affect the optimal contract or any of our

normative results.

For simplicity suppose we have a one-degree polynomial for health (this is not necessary

but makes the exposition cleaner):

h′(a; b) = h0 + h1aa+ h1bb =
πo

µα

+
π1a

µα

a+
π1b

µα

b,

where π· are all identified and µα > 0 is the scale of α. Our calibration of αg uses the change

in h(a; b) when we increase the treatment from a lower to a higher level, respectively, aL and

aH . We first definitely integrate our (identified-to-scale) h′ to return the (identified-to-scale)

health level:

h(a; b) = H +
πo

µα

a+
π1a

µα

a2

2
+

π1b

µα

ab,

where H is the integration constant. The difference in which, given b = bcal can be written

as

∆hcal ≡ h(aL; bcal)− h(aH ; bcal) =

[
πo

µα

+
π1b

µα

b

]
[aH − aL] +

π1a

µα

a2H − a2L
2

=
qcal
µα

,

where qcal is identified because aL = 0, aH is based on an experimental intervention, and

bcal = −π0/π1b, which cancels out the intercept term (and is in any case identified).

We then calibrate αg from the expression

αg∆hcal = χ → αg =
χ

qcal
µα,

where χ is another known constant based on the experimental intervention. Therefore, αg

perfectly scales with µα.

Now consider the government’s problem, cast in terms of the demand profile:

max
P (a)

∫
A

S(p(a), a)[αgh
′(a; b)− p(a)]da

s.t.

S(p(a), a) = Pr{p(a) ≥ c′(a; z)− αh′(a; b)},

20



where p(a) = ∂P (a)
∂a

and P (a) contains a constant that satisfies voluntary participation for

all providers. We have shown the invariance of αgh
′(a; b) and αh′(a; b) to the choice of

µα > 0, and have also shown that c′(a, z) (where, c′(a; zi) = c′i(a) used above) is identified

independently from µα. This means that changing the value of µα does not affect the

government’s problem, meaning it does not affect the optimal contract (unrestricted or

constrained) or any of the normative results.

E.3 Special Case: Identification of F Given Quadratic Loss h

Recall our assumption that η is mean-independent of (b, x, p1): E(η|b, x, p1) = 0.23 Then OLS

estimation of the reduced form (11), separately for each provider, yields consistent estimates

of β1, β2i, β3, and νi for arbitrary provider i. The structural parameters and provider types

are continuous functions of reduced-form parameters and variables, as follows:

δ = −(β1)
−1

τ = −(β1)
−1β3

αi = (β1)
2(β2i)

−1

zi = µz − νi(β2i)
−1

Hence the structural parameters and provider types are identified by and can be consistently

estimated from the reduced-form coefficients of the provider-specific regressions. Finally, the

joint distribution F is identified from the consistent estimates of (αi, zi) for each provider i.

F Recovery of F (α, z)

As noted in Section 5.2, we recover Fk(α, z) under a distributional assumption, where lnα

and z have a joint normal distribution. Here we show how we estimate the parameters

of that distribution, which are recovered from the first and second moments of the random

coefficient (βk
2 ) and random effect (νk) in the reduced form (11). First we present an auxiliary

regression of the residuals of (11) that yields the second moments of βk
2 and νk (while the

mean of βk
2 comes directly from (11), and the mean of νk is zero). Then we derive closed-form

expressions for the parameters of Fk(α, z) as functions of these moments.

To develop the auxiliary regression, let β̄k
2 denote the mean of βk

2 , and decompose the

23We continue to suppress the k denoting the baseline hematocrit interval.
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random coefficient as βk
2 = β̄k

2 + β̃k. Then (11) can be rearranged as

aijt = βk
1 bjt + β̄k

2 p̃t + βk′
3 xjt + β̃k

i p̃t + νk
i + ϵkijt︸ ︷︷ ︸

rkijt

(for bjt in interval k). The OLS coefficient on p̃t is a consistent estimate of the mean of the

random coefficient, E(βk
2 ), under the assumptions discussed in Section 5.2. The auxiliary

regression then uses the composite residual, rkijt, times the provider-level mean residual, r̄ki

(taken within interval k), as its dependent variable. This yields consistent estimates of the

second moments, V(βk
2 ), V(ν

k), and Cov(βk
2 , ν

k), as we show next.24

First expand the product of the composite residual and the provider-level mean residual

as follows:

rkijtr̄
k
i = (β̃k

i p̃t + νk
i + ϵkijt)

(
1

nk
i

∑
l,s:bls∈k

β̃k
i p̃s + νk

i + ϵkils

)
= (β̃k

i p̃t)β̃
k
i p̃

k

i + (β̃k
i p̃t)ν

k
i + (β̃k

i p̃t)ϵ̄
k
i

+ νk
i β̃

k
i p̃

k

i + νk
i ν

k
i + νk

i ϵ̄
k
i

+ ϵkijtβ̃
k
i p̃

k

i + ϵkijtν
k
i + ϵkijtϵ̄

k
i .

(The variables of the form z̄ki denote means taken among the observations for provider

i where the patient’s baseline hematocrit is in interval k, and nk
i is the number of such

observations.) The expectation of this product conditional on the payment rates and the

number of observations is as follows:

E[rkijtr̄
k
i |p̃t, p̃

k

i , n
k
i ] = V (β̃k)p̃tp̃

k

i + Cov(β̃k, νk)p̃t + 0

+ Cov(β̃k, νk)p̃
k

i + V (νk) + 0

+ 0 + 0 + E[ϵkijtϵ̄
k
i ]

= V (β̃k) · p̃tp̃
k

i + Cov(β̃k, νk) · [p̃t + p̃
k

i ] + V (νk) + V (ϵk) · 1

nk
i

.

This assumes that the error terms ϵkijt are orthogonal to β̃k
i and νk

i and are uncorrelated

across observations. Last, note that V(βk
2 ) = V(β̃k) and Cov(βk

2 , ν
k) = Cov(β̃k, νk). Thus,

we can consistently estimate the desired variances and covariance of βk
2 and νk by performing

a regression of rkijtr̄i on p̃tp̃i, p̃t + p̃, a constant, and 1
ni
.

24This assumes that the second moments of the unobservables (β̃k
i , ν

k
i , ϵ

k
ijt) are independent of the ob-

servables, while OLS estimation of (11) assumes their first moments are independent of the observables.
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Now we show how these reduced-form moments are mapped to the parameters of Fk(α, z).

The joint normal distribution of lnα and z is specified as follows:(
lnα

z

)
∼ N

((
µα,k

µz

)
,

[
σ2
α,k σαz,k

σαz,k σ2
z,k

])

The value of µz is treated as known from our external information on costs, which leaves four

parameters to recover for each hematocrit interval: µα,k, σ
2
α,k, σαz,k, and σ2

z,k. The expressions

for these parameters as functions of the reduced-form moments are derived below. These

parameters are recovered separately for each interval k, so we omit that index here to simplify

the derivations.

a) First we obtain µα and σ2
α from E(β2) and V(β2), using the following properties of the

log-normal distribution:

(i) If X has a log-normal distribution, where lnX ∼ N(µ, σ2), then

µ = ln

(
(E(X))2√

V(X) + (E(X))2

)
and σ2 = ln

(
1 +

V(X)

(E(X))2

)
,

(ii) and if Y = X−1, then lnY ∼ N(−µ, σ2).

Hence, because α is log-normal, and α−1 = δ2β2, we have

µα = − ln

(
δ2(E(β2))

2√
V(β2) + (E(β2))2

)
and σ2

α = ln

(
1 +

V(β2)

(E(β2))2

)
.

(Also recall that δ comes directly from β1 in (11).)

b) Next we obtain σαz from Cov(β2, ν), along with E(β2) and V(β2). First, we use the

definitions β2 ≡ δ−2α−1 and ν ≡ −(z − µz)β2 to put the reduced-form covariance in terms

of the structural parameters:

Cov(ν, β2) = Cov(−(z − µz)δ
−2α−1, δ−2α−1) = δ−4Cov(−(z − µz)α

−1, α−1).

Then we use the definitional relationship between the covariance and expectations:

δ−4Cov(−(z − µz)α
−1, α−1) = δ−4E[−(z − µz)α

−2]− δ−4E[−(z − µz)α
−1] · E[α−1].
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Now we apply Stein’s lemma (Stein, 1981) to the terms E[−(z−µz)α
−1] and E[−(z−µz)α

−2].

We use a version of the lemma for two variables, stated as follows: if X1 and X2 are jointly

normally distributed, g is differentiable, and the relevant expectations exist, then

E[(X1 − µ1)g(X2)] = Cov(X1, X2) · E[g′(X2)].

Let X1 = −z, X2 = − lnα, and g(X2) = eX2 or g(X2) = e2X2 as appropriate.25 Then we

have

E[−(z − µz)α
−1] = σαzE[α

−1] = σαzδ
2E(β2);

E[−(z − µz)α
−2] = σαz2E[α

−2] = σαz2δ
4E(β2

2) = σαz2δ
4[V(β2) + E(β2)

2].

The first equality in each line above applies the lemma, and the second equality uses α−1 =

δ2β2 (by definition). The last equality in the second line uses the definitional relationship

between the variance and expectations. Finally we insert these results into the expression

for Cov(ν, β2):

Cov(ν, β2) = δ−4
(
σαz2δ

4[V(β2) + E(β2)
2]− σαzδ

2E(β2) · δ2E(β2)
)

= σαz

(
2V(β2) + E(β2)

2
)
.

Therefore,

σαz =
Cov(ν, β2)

2V(β2) + E(β2)2
.

c) Last, we obtain σ2
z from V(ν), and the other moments, as follows. As with the

covariance in part (b), we first put the reduced-form variance in terms of the structural

parameters, and then use the relationship between the variance and expectations:

V(ν) = V(−(z − µz)δ
−2α−1) = δ−4V(−(z − µz)α

−1)

= δ−4E[(−(z − µz))
2α−2]− δ−4E[−(z − µz)α

−1]2.

From the derivations in part (b), we have E[−(z−µz)α
−1] = σαzδ

2E(β2) in the second term,

so we must now derive the result for E[(−(z − µz))
2α−2] in the first term.

We start by integrating out z via the use of iterated expectations. First,

E[(−(z − µz))
2α−2] = E[α−2E[(−(z − µz))

2|α]].
25Note that for g(X2) = eX2 then g(X2) = α−1 and g′(X2) = α−1, or for g(X2) = e2X2 then g(X2) = α−2

and g′(X2) = 2α−2.
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Then, using the relationship between the variance and expectations on the inner conditional

expectation,26

E[(−(z − µz))
2|α] = V[−(z − µz)|α] + E[−(z − µz)|α]2

Because z and lnα are joint normal (as are −z and − lnα), we have

V[−(z − µz)|α] = V[−z| − lnα] = σ2
z −

σ2
αz

σ2
α

E[−(z − µz)|α]2 = (E[−z| − lnα] + µz)
2 =

(
σαz

σ2
α

(− lnα + µα)

)2

.

Substituting these back into the outer (unconditional) expectation, we have

E[(−(z − µz))
2α−2] =

(
σ2
z −

σ2
αz

σ2
α

)
E[α−2] +

(
σαz

σ2
α

)2

E[α−2(− lnα + µα)
2].

In part (b) we showed that E[α−2] = δ4[V(β2) + E(β2)
2], so we must now derive a result for

E[α−2(− lnα + µα)
2] in the second term.

To do this we apply Stein’s lemma to − lnα, although to simplify the expressions, here

we write X in place of − lnα. In the univariate case the lemma is stated as follows: if X

is normally distributed, g is differentiable, and the relevant expectations exist, then E[(X −
µX)g(X)] = V(X) · E[g′(X)]. This must be applied twice, as follows:

E[α−2(− lnα + µα)
2] = E[e2X(X − µX)

2] =

(i) E[(X − µX) · e2X(X − µX)︸ ︷︷ ︸
g(X)

] = σ2
XE[2e

2X(X − µX) + e2X︸ ︷︷ ︸
g′(X)

] =

(ii) σ2
XE[(X − µX) · 2e2X︸︷︷︸

g(X)

] + σ2
αE[e

2X ] = (σ2
X)

2E[4e2X︸︷︷︸
g′(X)

] + σ2
XE[e

2X ]

= (4(σ2
X)

2 + σ2
X)E[e

2X ] = (4(σ2
α)

2 + σ2
α)E[α

−2]

Substituting this in above, we have

E[(−(z − µz))
2α−2] =

(
σ2
z −

σ2
αz

σ2
α

)
E[α−2] +

(
σαz

σ2
α

)2

(4(σ2
α)

2 + σ2
α)E[α

−2]

=
(
σ2
z + 4(σαz)

2
)
E[α−2]

=
(
σ2
z + 4(σαz)

2
)
δ4[V(β2) + E(β2)

2].

where the last equality uses E[α−2] = δ4[V(β2)+E(β2)
2] from part (b). Finally, bringing the

26Note this is not simply the conditional variance of z because µz is not the conditional mean.
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results together, we have

V(ν) = δ−4
(
(σ2

z + 4(σαz)
2)δ4[V(β2) + E(β2)

2]− (σαzδ
2E[β2])

2
)

= (σ2
z + 4(σαz)

2)[V(β2) + E(β2)
2]− (σαz)

2E(β2)
2

Therefore

σ2
z =

V(ν) + (σαz)
2E(β2)

2

V(β2) + E(β2)2
− 4(σαz)

2.

□

Thus we have closed-form expressions for the structural parameters µα,k, σ
2
α,k, σαz,k, and

σ2
z,k as functions of the reduced-form moments E(βk

2 ), V(β
k
2 ), V(ν

k), and Cov(βk
2 , ν

k). This

establishes that the parameters of Fk(α, z) are uniquely identified by these moments (along

with δ and the external information on µz). Furthermore these expressions are continuous,

so the consistent estimates of the reduced-form moments from the OLS estimation of (11)

and the auxiliary regression above yield consistent estimates of the structural parameters.

G Calibrations

G.1 Calibration of µz

As described in the paper, we use external information on the costs of acquiring and ad-

ministering EPO to calibrate the value of the mean per-unit cost, µz. For the acquisition

cost, we use the median across facilities of the per-unit cost of purchasing the drug from

a distributor (net of discounts and rebates), computed from Renal Dialysis Facility Cost

Report Data, which is equal to $7.53 per 1,000 units (Table 1). For the administration cost,

we compute an average per-unit cost of staff time and non-drug supplies based on results

from Schiller et al. (2008), as follows. Schiller et al. (2008) reports an average cost for EPO

administration of $3.63 per dialysis session, and an average of 13.0 sessions per month, for

a total cost of $47.19 per month. From our claims data, the median dosage per month is

45,000 units (Table 1). (We use the median because it is not sensitive to large dosages that

occur with low probability, which were unlikely in the smaller sample used by the Schiller

et al. (2008) study.) Dividing $47.19 by 45,000, we arrive at an average administration cost

of $1.05 per 1,000 units. Adding this to the acquisition cost, we obtain a value of µz equal

to $8.58 per 1,000 units.
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G.2 Calibration of αg

We use information on the relationship between hematocrit levels and mortality risk from a

large clinical trial (Singh et al., 2006) and an estimate of the value of a statistical life-year

(VSLY) from Aldy and Viscusi (2008) to calibrate the value of αg. The parameter expresses

the conversion (i.e., marginal rate of substitution) in the government’s objective function

between health—specified as a quadratic function of the dosage of EPO—and dollars. The

clinical trial gives estimates of the mortality risk associated with different hematocrit levels

(which result from different dosages), so under certain assumptions (described below), we

can find a value of αg that equates the difference in a quadratic function of the hematocrit

levels with the difference in mortality risks multiplied by the VSLY.

The clinical trial (Singh et al., 2006) compared outcomes between patients with chronic

kidney disease who were randomly assigned to target levels of hemoglobin equal to 11.3

g/dl and 13.5 g/dl. The lower target group achieved a mean hemoglobin level of 11.3 g/dl,

comparable to a 33.9% hematocrit level, while the higher target group only achieved a mean

hemoglobin level of 12.6 g/dl, comparable to a 37.8% hematocrit level. The cumulative

probability of death or serious cardiovascular event (e.g., heart attack, stroke) was 0.175 for

the higher target group and 0.135 for the lower target group (p. 2090), over a period of about

30 months (Figure 3, p. 2093). Assuming a uniform distribution of these events over time,

the difference in the probability of death or serious cardiovascular event over one year would

be 0.016 between the higher and lower target groups. Thus we have a relationship between

hematocrit levels and the annual risk of death or a debilitating health event, at two points

in the distribution of hematocrit.

If we assume how the targets used in the trial relate to the true point where health is

maximized (i.e., where h′(a; b, x) = 0), we can compute the difference in health from the

two targets, as defined by our quadratic specification. We assume that the lower target used

in the trial is equal to τ , where health is maximized, implying that the difference in health

from the two targets is equal to 7.6, as follows:(
−1

2
(33.9− τ)2

)
−
(
−1

2
(37.8− τ)2

)
=

1

2
(33.9− 33.9)2 +

1

2
(37.8− 33.9)2 = 7.6.

Multiplying this by αg will give the government’s value of this difference in health, in terms

of dollars.

If we further assume that the government’s value of this difference in health comes entirely

from the difference in the risk of death or a debilitating health event, we can find the

monetary value of this difference in health by multiplying a VSLY estimate by the difference

in these risks from the two target levels. Aldy and Viscusi (2008) provides VSLY estimates
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of approximately $300,000 (p. 580), so the annual value of the difference in risks would be

0.016×$300, 000 = $4, 800. Finally, because the time periods in our model are months, this

would equal the government’s value of the above difference in health over twelve periods.

Therefore, we have

12× 7.6αg = 0.016× $300, 000,

which yields our calibrated value of αg = 52.6.

H Posterior Means of α and z

Given the estimated distributions of α and z, posterior distributions can be computed for

each provider by applying Bayes’ Theorem, as follows. Let g(a|b, p, x;α, z) denote the density
function for the dosage conditional on the patient’s covariates (b, p, x) and the provider’s type

(α, z). To fully specify this density function, a distribution for the error term η (equivalently,

ϵ) in the reduced form (11) is needed (note that the reduced form shows how a is a function

of η and the other variables and parameters). Accordingly, let η have a normal distribution

with mean zero and variance σ2
η, and denote its density as ϕ(η;σ2

η).

For a provider i with a set of patient-month observations JT (i), the posterior density of

(α, z) is proportional to ∏
jt∈JT (i)

g(aijt|bjt, pt, xjt;α, z) · fk(α, z)

(see, e.g., Train, 2009, Chapter 11). We use this to compute posterior means of α and z for

each provider (in each hematocrit interval k) via Monte Carlo integration. First we draw

values of (α, z) from the estimated distribution Fk(α, z). Then with each draw, (α̂s
ik, ẑ

s
ik), we

calculate the value of the error term for each observation, jt ∈ JT (i), as follows:

η̂sijt = aijt −
[
−1

δk

]
bjt +

[
1

α̂s
ikδ

2
k

]
p1t +

[
τ ′k
δk

]
xjt +

[
−ẑsik
α̂s
ikδ

2
k

]
(A21)

(this comes from rearranging the reduced form). The conditional density of the dosage

for each observation, g(aijt|bjt, pt, xjt; α̂
s
ik, ẑ

s
ik), is equal to the density of this error term,

ϕ(η̂sijt;σ
2
η,k). Finally, the posterior mean of α for provider i (in hematocrit interval k) is

equal to ∑S
s=1 α̂

s
ik

∏
jt∈JT (i) ϕ(η̂

s
ijt;σ

2
η,k)∑S

s=1

∏
jt∈JT (i) ϕ(η̂

s
ijt;σ

2
η,k)

,

and similarly for the posterior mean of z. To complete these computations, the estimated
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parameters are used in (A21), and the variance σ2
η,k is set equal to the variance of the

reduced-form residuals in that interval.

Table A2 presents summary statistics on these provider-level posterior means, by owner-

ship type and by chain affiliation. Among for-profit dialysis centers, for example, the median

of the center-specific posterior means of α is 31.9 and the mean is 36.3, in the bottom interval

of baseline hematocrit. By comparison, among non-profit and governmental centers, the me-

dian is 32.8 and the mean is 41.5 in that interval, indicating somewhat greater weight placed

on patient health, on average. The posterior means of z, the marginal cost, are noticeably

lower among for-profit centers, with medians and means below $8.60 in all intervals, while

the medians and means among non-profit and governmental centers are roughly between

$8.70 and $8.90. However the distributions of α and z also overlap substantially between

these two groups of providers. In all intervals, the standard deviations of the provider-level

posterior means within each group are much larger than the differences between the medians

or means of the two groups.

We see similar patterns comparing providers in the two large chains against all other

providers. In almost all cases, the posterior means of α are somewhat lower in DaVita and

Fresenius centers, compared to all other centers. The marginal costs are also consistently

lower for centers in the two large chains, compared to other centers. The variation in marginal

costs is lower within the large chains as well, typically by one quarter to one third. This is

broadly consistent with the variation in acquisition costs observed in Medicare cost report

data (see footnote 38 in the paper).

I Check of Regularity Condition

Figure A3 plots the supply curves (dashed, grey lines) of physician types providing each

treatment amount for a patient with the median baseline hematocrit level, and shows that

none intersect the marginal payment curve (solid, black line) more than once.27

J Full Estimation Results and Counterfactuals

This section presents the complete results on the optimal contracts and outcomes under those

contracts for the median baseline hematocrit and mean patient characteristics in each of the

three hematocrit intervals (30–33, 33–36, and 36–39), using the government’s valuation of

health, αg, calibrated as described above.28 In addition, Table A3 provides the full estimation

27We have also verified that this regularity condition is satisfied in the other baseline hematocrit intervals.
28The values for the median baseline hematocrit level are 32, 34.8, and 37.4 for the lower, middle, and

upper intervals, respectively.
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Table A2: Distribution of Provider-Level Posterior Means

Altruism (α) Marginal Cost (z)

Interval of Baseline Hematocrit Interval of Baseline Hematocrit
> 30 to 33, > 33 to 36, > 36 to 39 > 30 to 33, > 33 to 36, > 36 to 39

I) Ownership Type

a) Non-profit and governmental
Median 32.8 14.8 20.9 8.68 8.72 8.61
Mean 41.5 16.7 30.0 8.88 8.95 8.75
Std. Dev. 88.1 24.2 71.3 0.59 0.81 0.42

b) For-profit
Median 31.9 15.5 20.5 8.55 8.50 8.58
Mean 36.3 17.3 27.4 8.55 8.55 8.59
Std. Dev. 59.1 25.4 64.0 0.38 0.64 0.28

II) Chain Affiliation

c) DaVita
Median 28.9 15.9 22.2 8.49 8.44 8.58
Mean 33.2 17.5 26.3 8.44 8.43 8.58
Std. Dev. 56.4 24.8 41.8 0.29 0.56 0.22

d) Fresenius
Median 31.1 14.4 18.8 8.55 8.47 8.56
Mean 35.8 16.7 26.4 8.56 8.51 8.53
Std. Dev. 55.4 24.9 74.6 0.34 0.59 0.23

e) Other/Indep.
Median 35.4 16.7 20.4 8.61 8.65 8.59
Mean 40.0 17.6 28.3 8.73 8.80 8.68
Std. Dev. 66.4 26.3 70.5 0.51 0.74 0.36

Posterior means computed in each interval for each facility using estimated model parameters, as described
in Appendix H. Ownership type and chain affiliation of each facility taken from Medicare cost report data.
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Figure A3: Regularity condition check, for patients with median severity of anemia.

Notes: Figure plots marginal payment curve (solid, black line) and physician supply curves (dashed, grey
lines) for patients with median baseline hematocrit (b = 34.8) and mean target hematocrit (τ ′kx̄k = 43.7).

results for our reduced form.

Figures A4 to A6 show the contracts (i.e., the total payments as a function of the treat-

ment amounts), the marginal payments, and distributions of treatment amounts, separately

for each interval. They have similar patterns, as discussed in the main text, with the optimal

nonlinear contract below the observed contract and intersecting the optimal linear contract.

All contracts start at zero dollars for zero units. The reduction in the marginal payment

is more gradual in the contract for the low baseline hematocrit, and it occurs at a higher

dosage. On the other hand, in the optimal linear contract, the payment rate is smaller for

the low baseline hematocrit, where patients have greater need for larger dosages. This indi-

cates the importance of altruism in our environment: because physicians value the outcome

of their patients, they can potentially be paid less to treat those who need treatment more.

K Sensitivity Analyses and Other Assessments

K.1 Robustness of the Reduced Form

Table A4 provides the full estimation results for the alternative specifications of the reduced

form reported in Table 3, columns 4 to 9. Table A5 provides the results for the main

specification with asymptotic standard errors clustered on chains rather than facilities.
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Figure A4: Optimal nonlinear contract treatment amounts and payments, baseline hemat-
ocrit 30-33

Notes: Figure plots treatment and payment amounts under the optimal nonlinear contract (blue, solid lines)
for patients with median baseline hematocrit and mean characteristics in the lower hematocrit interval.
Results with the optimal linear contract (red, dashed lines) and observed contract (green, dotted lines) are
shown for comparison. Panel (a) plots the payment amounts, panel (b) plots marginal payments, and panel
(c) plots the distribution of treatment amounts.
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Figure A5: Optimal nonlinear contract treatment amounts and payments, baseline hemat-
ocrit 33-36

Notes: Figure plots treatment and payment amounts under the optimal nonlinear contract (blue, solid lines)
for patients with median baseline hematocrit and mean characteristics in the middle hematocrit interval.
Results with the optimal linear contract (red, dashed lines) and observed contract (green, dotted lines) are
shown for comparison. Panel (a) plots the payment amounts, panel (b) plots marginal payments, and panel
(c) plots the distribution of treatment amounts.
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Figure A6: Optimal nonlinear contract treatment amounts and payments, baseline hemat-
ocrit 36-39

Notes: Figure plots treatment and payment amounts under the optimal nonlinear contract (blue, solid lines)
for patients with median baseline hematocrit and mean characteristics in the upper hematocrit interval.
Results with the optimal linear contract (red, dashed lines) and observed contract (green, dotted lines) are
shown for comparison. Panel (a) plots the payment amounts, panel (b) plots marginal payments, and panel
(c) plots the distribution of treatment amounts.
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Table A3: OLS and Fixed Effects Estimates of the Reduced Form

Interval: > 30 to 33, > 33 to 36, > 36 to 39 > 30 to 33, > 33 to 36, > 36 to 39

Variable (1) (2) (3) (4) (5) (6)

Hematocrit -9.29 -6.32 -3.56 -9.22 -6.51 -4.00

(0.24) (0.15) (0.13) (0.19) (0.13) (0.12)

Reimb. rate 9.53 6.39 3.92 9.42 5.99 4.67

(3.19) (2.03) (1.91) (3.00) (1.95) (1.85)

Age in years -0.41 -0.37 -0.26 -0.37 -0.33 -0.24

(0.02) (0.02) (0.01) (0.02) (0.01) (0.01)

Female sex -0.89 1.54 2.89 -1.53 1.21 2.38

(0.55) (0.40) (0.34) (0.49) (0.38) (0.33)

Charlson=1 9.06 8.05 7.37 7.97 7.08 6.50

(0.96) (0.69) (0.60) (0.86) (0.65) (0.59)

Charlson=2 10.76 10.25 8.21 10.30 9.72 7.93

(0.90) (0.67) (0.59) (0.81) (0.63) (0.57)

Charlson=3 13.87 11.87 8.58 12.60 11.09 8.73

(0.94) (0.72) (0.60) (0.88) (0.70) (0.58)

Charlson=4 15.55 13.93 10.83 15.06 13.77 10.64

(1.22) (0.86) (0.73) (1.05) (0.82) (0.70)

Charlson=5 16.56 15.03 11.89 16.20 14.53 11.27

(1.40) (1.08) (0.93) (1.26) (1.01) (0.89)

Charlson=6 18.63 18.52 13.84 17.82 18.05 13.44

(1.87) (1.48) (1.21) (1.61) (1.35) (1.14)

Charlson=7 26.23 26.02 20.39 23.46 24.37 19.95

(3.02) (2.48) (2.19) (2.61) (2.30) (2.12)

Charlson=8 23.96 24.27 14.52 23.02 22.00 15.70

(3.94) (3.06) (2.51) (3.56) (3.09) (2.50)

Charlson=9 32.00 32.43 22.86 31.54 32.96 23.44

(4.98) (4.17) (3.81) (4.97) (4.08) (3.98)

Charlson=10 23.91 28.48 32.24 22.57 27.65 29.77

(7.02) (6.71) (6.96) (6.16) (6.46) (6.76)

Charlson=11 39.13 43.64 39.81 40.92 40.83 39.65

(11.01) (8.79) (7.31) (8.45) (8.04) (7.07)

Charlson=12 38.42 33.52 25.67 27.82 27.22 16.10

(12.51) (8.06) (9.82) (10.18) (7.17) (10.17)

Constant 392.18 294.37 192.16 388.18 299.35 207.52

(7.93) (5.29) (4.98) (6.18) (4.60) (4.58)

Observations 231,702 405,019 283,024 231,702 405,019 283,024

R-squared 0.029 0.028 0.021 0.029 0.027 0.021

RMSE 71.43 58.46 49.01 65.78 55.05 46.29

Each column is a separate regression.  Regressions also include month and year dummies.

Robust standard errors in parentheses, clustered on dialysis centers.

OLS Fixed Effects
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Table A4: Alternative Specifications of the Reduced Form

Interval: > 30 to 33, > 33 to 36, > 36 to 39 > 30 to 33, > 33 to 36, > 36 to 39

Variable (1) (2) (3) (4) (5) (6)

Hematocrit -9.61 -6.39 -3.46 -9.24 -6.32 -3.56

(0.24) (0.15) (0.13) (0.24) (0.15) (0.13)

Reimb. rate 9.81 6.13 4.26 9.40 6.09 4.08

(3.20) (2.04) (1.92) (3.20) (2.03) (1.91)

Age in years -0.39 -0.36 -0.26

(0.02) (0.02) (0.01)

Female sex -0.73 1.61 2.95

(0.55) (0.40) (0.34)
Myocardial inf. -0.62 0.31 -0.74

(1.09) (0.88) (0.74)

Cong. hrt. failure 9.38 9.16 7.06

(0.80) (0.59) (0.50)

Periph. vasc. dis. 4.16 3.63 3.12

(1.01) (0.78) (0.66)

Cerebro vasc. dis. -2.35 -0.22 -0.43

(1.19) (0.98) (0.74)

Dementia -2.93 0.06 0.18

(2.73) (1.96) (1.58)

Chron. pulm. dis. 3.63 3.11 1.99

(0.88) (0.65) (0.58)

Rheumatic dis. 6.74 8.67 5.36

(2.18) (1.81) (1.50)

Peptic ulcer dis. 9.62 7.32 6.35

(2.15) (1.71) (1.41)

Mild liver dis. 6.78 4.18 3.33

(2.24) (1.62) (1.37)

Diabetes w/out comp. 4.86 4.56 3.65

(0.72) (0.56) (0.48)

Diabetes w/chron. comp. 1.64 0.93 0.74

(0.80) (0.59) (0.51)

Hemi/para-plegia 3.58 3.03 0.96

(3.26) (2.39) (2.03)

Any malignancy 12.70 10.77 8.30

(1.95) (1.57) (1.38)

Mod/severe liver dis. 18.14 21.84 17.08

(5.18) (3.77) (3.47)

Metastatic tumor 14.63 10.88 11.07

(4.55) (3.60) (3.45)

AIDS/HIV 20.96 22.05 18.22

(4.00) (3.22) (2.96)

Constant 383.73 280.61 178.15 390.51 294.56 192.74

(7.88) (5.24) (4.96) (7.89) (5.26) (4.98)

Observations 231,702 405,019 283,024 231,702 405,019 283,024

R-squared 0.014 0.009 0.005 0.030 0.030 0.022

RMSE 71.98 59.01 49.40 71.38 58.40 48.98

Each column is a separate regression.  Regressions also include month and year dummies.

Robust standard errors in parentheses, clustered on dialysis centers.

No Patient Observables Comorbidity Indicators
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Table A5: Alternative Clusters for the Standard Errors

Interval: > 30 to 33, > 33 to 36, > 36 to 39 > 30 to 33, > 33 to 36, > 36 to 39

Variable (1) (2) (3) (4) (5) (6)

Hematocrit -9.29 -6.32 -3.56 -9.29 -6.32 -3.56

(0.24) (0.15) (0.13) (0.46) (0.97) (0.40)

Reimb. rate 9.53 6.39 3.92 9.53 6.39 3.92

(3.19) (2.03) (1.91) (7.83) (6.50) (4.25)

Age in years -0.41 -0.37 -0.26 -0.41 -0.37 -0.26

(0.02) (0.02) (0.01) (0.03) (0.02) (0.02)

Female sex -0.89 1.54 2.89 -0.89 1.54 2.89

(0.55) (0.40) (0.34) (1.13) (0.55) (0.54)

Charlson=1 9.06 8.05 7.37 9.06 8.05 7.37

(0.96) (0.69) (0.60) (1.27) (1.05) (0.67)

Charlson=2 10.76 10.25 8.21 10.76 10.25 8.21

(0.90) (0.67) (0.59) (1.51) (0.99) (0.62)

Charlson=3 13.87 11.87 8.58 13.87 11.87 8.58

(0.94) (0.72) (0.60) (1.75) (1.04) (0.64)

Charlson=4 15.55 13.93 10.83 15.55 13.93 10.83

(1.22) (0.86) (0.73) (2.48) (1.68) (0.95)

Charlson=5 16.56 15.03 11.89 16.56 15.03 11.89

(1.40) (1.08) (0.93) (2.97) (1.96) (1.31)

Charlson=6 18.63 18.52 13.84 18.63 18.52 13.84

(1.87) (1.48) (1.21) (2.84) (3.22) (1.50)

Charlson=7 26.23 26.02 20.39 26.23 26.02 20.39

(3.02) (2.48) (2.19) (4.02) (4.03) (3.89)

Charlson=8 23.96 24.27 14.52 23.96 24.27 14.52

(3.94) (3.06) (2.51) (3.51) (2.93) (2.54)

Charlson=9 32.00 32.43 22.86 32.00 32.43 22.86

(4.98) (4.17) (3.81) (5.79) (5.85) (2.72)

Charlson=10 23.91 28.48 32.24 23.91 28.48 32.24

(7.02) (6.71) (6.96) (5.32) (7.77) (5.02)

Charlson=11 39.13 43.64 39.81 39.13 43.64 39.81

(11.01) (8.79) (7.31) (8.76) (7.06) (6.64)

Charlson=12 38.42 33.52 25.67 38.42 33.52 25.67

(12.51) (8.06) (9.82) (12.21) (6.21) (9.20)

Constant 392.18 294.37 192.16 392.18 294.37 192.16

(7.93) (5.29) (4.98) (16.00) (33.99) (12.94)

Observations 231,702 405,019 283,024 231,702 405,019 283,024

R-squared 0.029 0.028 0.021 0.029 0.028 0.021

RMSE 71.43 58.46 49.01 71.43 58.46 49.01

Each column is a separate regression.  Regressions also include month and year dummies.

Robust standard errors in parentheses, clustered on dialysis centers or chains as indicated.

Clustered on Dialysis Centers Clustered on Chains
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Table A6: Distribution of Hematocrit on Current and Prior Month Claims

Current HCT

Lagged HCT =,< 30 >30 - 31 >31 - 32 >32 - 33 >33 - 34 >34 - 35 >35 - 36 >36 - 37 >37 - 38 >38 - 39 > 39

=,< 30 0.363 0.210 0.155 0.109 0.076 0.056 0.041 0.035 0.031 0.029 0.029

>30 - 31 0.088 0.116 0.080 0.064 0.048 0.036 0.027 0.022 0.019 0.016 0.017

>31 - 32 0.088 0.103 0.125 0.088 0.070 0.055 0.043 0.034 0.029 0.026 0.024

>32 - 33 0.107 0.137 0.149 0.168 0.134 0.112 0.090 0.073 0.062 0.055 0.048

>33 - 34 0.081 0.106 0.120 0.133 0.157 0.129 0.108 0.089 0.076 0.068 0.056

>34 - 35 0.067 0.089 0.106 0.124 0.141 0.164 0.137 0.121 0.102 0.090 0.073

>35 - 36 0.069 0.088 0.102 0.126 0.149 0.174 0.205 0.184 0.171 0.155 0.131

>36 - 37 0.040 0.049 0.055 0.066 0.082 0.097 0.120 0.151 0.139 0.135 0.118

>37 - 38 0.031 0.035 0.039 0.046 0.056 0.069 0.090 0.111 0.145 0.136 0.128

>38 - 39 0.028 0.030 0.033 0.037 0.045 0.055 0.074 0.097 0.118 0.156 0.159

> 39 0.037 0.035 0.036 0.040 0.042 0.052 0.065 0.083 0.108 0.134 0.218

Matched 75,275 37,391 50,978 90,691 93,551 103,853 134,913 89,221 73,106 67,450 66,975

(Pct) 62.8% 73.3% 76.5% 79.5% 81.4% 81.9% 82.6% 81.9% 81.2% 80.2% 76.5%

Unmatched 44,513 13,595 15,667 23,380 21,307 22,895 28,500 19,652 16,929 16,666 20,620

(Pct) 37.2% 26.7% 23.5% 20.5% 18.6% 18.1% 17.4% 18.1% 18.8% 19.8% 23.5%

Total 119,788 50,986 66,645 114,071 114,858 126,748 163,413 108,873 90,035 84,116 87,595

Each column shows the distribution of hematocrit levels reported on the prior monthly claim, given the level
on the current monthly claim. The proportions are among those claims where a prior claim could be found,
defined as a claim with a start date between 25 and 34 days before the current start date. The numbers of
current claims with (Matched) and without (Unmatched) prior month claims are reported at the bottom.

K.2 Variability of Hematocrit within Patients over Time

Table A6 describes the variability of hematocrit levels within patients over time, by showing

the distribution of hematocrit values reported on patients’ prior monthly claims given the

values on their current monthly claims. Each column shows this distribution for a one-

percentage-point interval in the current hematocrit. For example, among patients with

current hematocrit greater than 34 and less than or equal to 35 (the column labeled “>34

- 35”), 16.4% had hematocrit in that same interval reported on their prior monthly claim,

while 11.2% and 5.5% had hematocrit levels of >33 - 34 and >31 - 32, respectively (the

corresponding rows in that column).

The prior monthly claim is defined as the claim with a start date of its claim period

between 25 and 34 days before the start date of the current claim period. (In rare cases

where multiple such claims are found, the claim with the lowest encrypted claim ID number

is used.) As the table shows, such a prior monthly claim could not be found for about one-

fifth of the current monthly observations, which mostly reflects new beneficiaries without

prior claims.
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K.3 Distributions of Facility Residuals and Test of Unimodality

Figure A7 shows the distributions of the facility-level mean residuals (r̄ki , defined in Appendix

F) in each hematocrit interval. We formally test the null hypothesis of unimodality for these

three distributions using a “dip test” (Hartigan and Hartigan, 1985), implemented with the

user-written command diptest in Stata (Cox, 2009). The test statistics (p-values) in each

interval are as follows: 0.0033 (0.9930), 0.0035 (0.9930), and 0.0029 (1.0000). Thus the null

hypothesis of unimodality is not rejected in any interval, and indeed test statistics are quite

small with p-values quite close to one.

K.4 Downstream Medical Costs

We combine estimates of the effects of EPO on transfusions and hospitalizations from Eliason

et al. (2022) with estimates of the average costs of transfusions and hospitalizations from

other sources noted below, to calculate a rough estimate of the the change in downstream

medical costs under the optimal nonlinear contract.

The exact sources and values are as follows:

• Effect of 1,000u of EPO on monthly transfusion rate: -0.000586 (Eliason et al. (2022),

Table 7, column 4 – IV estimate of the effect on transfusions)

• Effect of 1,000u of EPO on monthly hospitalization rate: 0.000205 (Eliason et al.

(2022), Table 8, column 2 – IV estimate of the effect on hospitalization for any cause)

• Mean expenditure per outpatient transfusion episode among a sample of chronic dial-

ysis patients: $854 (Gitlin et al., 2012, Table 2)

• Mean per-person per-year Medicare inpatient expenditures for ESRD patients in 2009:

$25,244 (United States Renal Data System, 2020, Figure 9.6)

• Mean per-person per-year number of hospitalizations for ESRD patients in 2009: 1.82

(United States Renal Data System, 2020, Figure 4.1)

• Mean Medicare inpatient expenditures per hospitalization: $25,244 / 1.82 = $13,870
(derived from above)

With these values, we calculate the change in downstream costs that would result from

the change in the mean monthly dosage of EPO under the optimal nonlinear contract, equal

to -11.5 thousand units, as follows:

−11.5×
[
(−0.000586× $854) + (0.000205× $13, 870)

]
= −$26.95 per patient per month.
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Figure A7: Distribution of facility-level mean residuals (r̄ki )

40



L Forcing Contract

This section describes how we compute the forcing contract implementing the maximum

dosage under the full-information allocation, a∗FI, and associated gains to the government

over the observed contract for the middle hematocrit interval.

Let P force(a) denote the forcing payment contract, where

P force(a) =

{
P for a = a∗FI

−∞ else
. (A22)

Solving the principal’s problem then amounts to finding the value of P that maximizes its

objective, subject to the usual voluntary participation constraint and an adapted incentive

compatibility constraint that reflects the forcing nature of the contract. This is accomplished

by making the participation constraint of the type (α, z) bind (note that the payment amount

for a ̸= a∗FI is relevant only for off-equilibrium behavior, and, as such, doesn’t matter so long

as it’s less than P ). The solution is P
∗
= u−αh(a∗FI)+ za∗FI and the principal’s associated

objective is αgh(a
∗FI)− P

∗
.

The results for the middle baseline hematocrit interval are presented in the bottom row

of Table A7. While there are no medically excessive treatments under this forcing contract,

the payment is larger than even under the observed payment contract, leaving massive

information rents to better types. Indeed, the gain in the government objective over the

observed contract (presented in the last column) is a fifth of that under the optimal nonlinear

contract. This makes sense, as this (and any other) forcing contract was in the set of contracts

considered by the principal when solving for the optimal unrestricted contract. Intuitively,

while this forcing contract does implement a desired treatment amount for one particular

agent type (highest altruism, lowest cost), the cost of getting the vast majority of agents

to implement this amount is larger than the principal’s valuation of any associated health

benefit.

Table A7: Summary of Outcomes under Forcing and other Contracts for Patients with
Median Severity of Anemia

Mean Mean Std. Dev. Share Gain in
Payment Dosage Dosage above τ Govt. Obj.

Observed 542 58.6 9.8 75
Optimal Linear 396 50.4 11.8 19 $ 98
Optimal Nonlinear 393 47.1 7.2 0 $ 125
Forcing Contract 582 54.6 0 0 $ 24
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M Importance of Both Dimensions of Heterogeneity

One of the strengths of our framework is that we are not beholden to an assumption that

there is only one dimension of heterogeneity (or, for that matter, that there exists multidi-

mensional heterogeneity). Rather, the model can recover the variation in different dimensions

and we can quantify the importance of different types of unobserved heterogeneity. Given

that we found altruism heterogeneity to be more substantial than heterogeneity in marginal

costs, a natural question is whether the latter type of heterogeneity matters, from a norma-

tive perspective. Accordingly, we have examined the importance of heterogeneity in z by

reducing the variance of z from its estimated value of 0.858 (which is different from zero at

standard significance levels) to 0.10, and then solving for the optimal nonlinear contract in

this counterfactual environment.29

The contracts are shown in Figure A8, for dosages of 40,000 units of EPO and greater

(this corresponds to over 90% of treatment amounts). Figure A8 plots the marginal payment

rates of the optimal nonlinear contract under our baseline parameterization (solid, blue, line)

and when the variance of z is reduced (dashed, red, line). The main difference is that the

marginal payment is higher for dosages up to about 48,000 units. This reflects an increase in

the marginal costs of formerly low-cost providers, when z is shrunk toward the mean. (Note

that very high-cost providers are not pictured here because they provide treatment amounts

lower than 40,000 units.) The dosages above 48,000 units come from types with sufficiently

high altruism that their behavior is not substantially affected by changes in marginal costs.

We have also computed how the optimal nonlinear contract based on the counterfactual

parameterization featuring less heterogeneity in z would affect the gains to the government

from better contracting. We compute that the government would on average gain $125 per

patient/month from moving to the optimal nonlinear contract from the observed contract.30

Using instead the optimal nonlinear contract resulting from misspecifying the model with

less heterogeneity in z, the government would gain $113 per patient-month. Some of the

reduction in the gain comes directly from the higher payments under the misspecified nonlin-

ear contract, which do not outweigh the government’s valuation of the resulting increases in

patient health. Thus, taking into account the full extent of the variation in z would improve

the government’s gain by just over 10%.

29We retain a positive value for σ2
z to avoid re-writing our algorithm to solve for the optimal nonlinear

contract. Because we found non-trivial heterogeneity in both altruism and marginal costs, we wrote our
algorithm assuming there was nonzero variance in each dimension; this means the results we present below
likely understate the importance of heterogeneity in z.

30We do this for the set of comparable types, i.e., those choosing treatment levels common to the baseline
distribution and the distribution under reduced σ2

z ; as this set comprises 99.8% of provider types, the value
presented here is virtually identical to the value presented in our baseline results in Table 5.
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