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Abstract

Teacher quality exhibits substantial growth over teachers’ careers, but why it improves is not

well understood. I use a human capital production function nesting On-the-Job-Training (OJT)

and Learning-by-Doing (LBD) and experimental variation from Glewwe et al. (2010), a teacher

incentive pay experiment in Kenya, to discern the presence and relative importance of these

forces. The identified set for the OJT and LBD components has a closed-form solution, which

depends on experimentally estimated average treatment effects. I find that the LBD component

is indeed present in the human capital production function, and also estimate an informative

upper bound on the OJT component.
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1 Introduction

Teacher quality, typically measured by a teacher’s value added to student achievement, is an im-

portant determinant of student achievement and economic growth (Rivkin et al., 2005; Hanushek,

2011). While the research and policy focus has typically been on cross-sectional variation in teacher

quality, researchers have also documented substantial growth in quality over teachers’ careers (Har-

ris and Sass, 2011; Wiswall, 2013; Papay and Kraft, 2015). For example, using data from North

Carolina, Wiswall (2013) finds that the average growth in teacher quality over 35 years of experi-

ence is equal to almost one standard deviation of the cross-sectional teacher quality among novice

teachers.

While the growth in quality over teachers’ careers is clearly important, little is known about why

it occurs. Economists have developed two main theories to explain how workers accumulate human

capital, which is then used to produce output: On-the-Job Training (OJT) and Learning-by-Doing

(LBD). In the “pure OJT” model, workers (in the current application, teachers) allocate work time

away from production (e.g., classroom teaching) to invest in their human capital (e.g., teachers’

professional development) (Becker, 1964; Ben-Porath, 1967). This model implies a tradeoff between

current and future production because of the multitask problem (Hölmstrom and Milgrom, 1991),

which emerges because OJT investments are unobserved and, therefore, noncontractible. This

tradeoff is not present under the “pure LBD” model, wherein workers accumulate human capital

via the act of production (Rosen, 1972; Weiss, 1972; Blinder and Weiss, 1976).1

The importance of these potential determinants of human capital has implications for the design

of effective education policy, and, more generally, optimal employee compensation in the presence of

market failures. For example, if OJT was the main driver of teacher human capital accumulation

then an incentive pay scheme that increased current achievement could reduce long-run teacher

quality, by diverting teachers from making human capital investments. This would not be the case

if instead LBD were the dominant force. More generally, the importance of OJT vs. LBD forces has

also been shown to have implications for the design of tax policy (Heckman et al., 2002; Blandin,

2018) and even the steady state of an economy (Hansen and İmrohoroğlu, 2009).

Unfortunately, we do not know about the importance of OJT versus LBD forces among any

type of worker, let alone teachers. Killingsworth (1982) shows there are no clear general testable

implications of the OJT versus LBD theories of human capital accumulation when using standard

observational data on workers. Additionally, as Heckman et al. (2002) discuss, identification in such

contexts is further hampered by equilibrium re-adjustments that occur in the private sector.2 This

1For an example of an OJT-intensive job, consider being a student in school. For an example of an LBD-intensive
job, consider “chicken sexing”, where workers gain an ability to determine the sex of baby chickens through their
experience sorting chicks (McWilliams, 2018).

2Belley (2017) uses “excess variation” in wage growth to test for the presence of a non-LBD determinant in human
capital production, rejecting the specifications lacking non-LBD determinant for women; he is careful not to ascribe
this variation to the presence of OJT. Researchers using the OJT framework (see, e.g., Haley, 1976; Heckman, 1976)
typically circumvent the fact that OJT investments are unobserved by solving for the optimal investment path in
a worker’s dynamic program, which yields estimates of the importance of OJT in the technology of human capital
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has left researchers and policymakers lacking even basic, qualitative information about the presence

of OJT versus LBD forces for workers of any type. This helps explain why prior empirical research

has adopted “pure” specifications, only allowing for either OJT or LBD as the force generating

human capital.3

To fill this gap, this paper develops a framework that yields new findings about the roles played

by OJT and LBD forces in the technology governing teacher human capital accumulation. In light of

the prominent identification difficulties, I adopt a partial identification approach. The identified set

contains all of the values of the OJT and LBD components of teacher human capital accumulation

consistent with the data, which can then be projected onto the marginal identified set for either

component. I estimate the identified set using data from an experimental intervention, Glewwe

et al. (2010), which studies a teacher performance pay scheme enacted across many sites across

Kenya. Labor prices are often fixed in the education sector because teachers are typically paid

according to public salary schedules (Podgursky and Springer, 2011) and worker-specific output is

measured, even if noisily so, making teacher quality trajectories a particularly attractive context

for discriminating between OJT and LBD.

The starting point is workhorse models that have become ubiquitous in empirical research

over the last five decades. The value-added (VA) model (Hanushek, 1971; Murnane, 1975), which

measures the contribution of different educational inputs to the production of student achievement,

is used in the overwhelming mass of research on teacher quality (for more recent examples, see Kane

et al., 2013; Chetty et al., 2014).4 The literature studying human capital accumulation has from

its inception typically used log-linear specifications when considering either OJT (Brown, 1976;

Haley, 1976; Heckman, 1976) or LBD (Blinder and Weiss, 1976), and these specifications continue

to dominate in more recent research (see, e.g., Heckman et al., 1998; Fan et al., 2015; Blandin,

2018).5

I extend the modal specifications in the literature to nest both OJT and LBD forces. The re-

sulting specification leverages experimentally estimated average treatment effects (ATEs) to report

key information about average tendencies and guarantees that identification is not driven by as-

sumed nonlinearities in functional forms, while not being very restrictive compared to specifications

typically used in the literature. As is typically the case in the literature, I model investment and

production inputs as unobserved.6 This closely matches the teacher quality application, where vari-

accumulation. See Kuruscu (2006) for an example using a different approach.
3This is also true of recent research studying heterogeneity in the returns to experience for teachers (Kraft and

Papay, 2014) or other types of workers (see, e.g., Shaw and Lazear, 2008; Haggag et al., 2017). Here, too, the
distinction between OJT versus LBD has implications for policy, as heterogeneous impacts of interventions would be
exacerbated or attenuated, depending on how human capital was generated.

4See McCaffrey et al. (2003) and Hanushek and Rivkin (2012) for detailed discussions.
5As discussed by Willis (1985), these specifications for human capital production had already had a long history

of use in labor economics as of three decades ago. These specifications are also consistent with those in the statistical
literature spawned by Abowd et al. (1999). See Shaw (1989) for an empirical model of LBD using a different
specification and see Fu et al. (2021) for an empirical model of OJT using a different specification.

6Kuruscu (2006), who considers general worker contexts, argues that it is more appropriate to treat on-the-
job investments as unobserved because (at least) some training may not be observed by researchers. While this
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ables that might seem like natural measures of training, such as formal professional development,

or additional certification or education (e.g., Master’s degrees), do not help predict teacher quality

(Hanushek, 2003; Hanushek and Rivkin, 2006; Harris and Sass, 2011; Podgursky and Springer,

2011; Jackson et al., 2014), and the general lack of availability of data on how teachers allocate

their work time (Hanushek and Rivkin, 2012).7 This makes it most natural to treat the relevant

(i.e., productive) teacher inputs as unobserved.

Given the literature’s prevailing treatment of post-schooling OJT investments as unobserved and

the associated lack of concrete examples of such investments, it might be useful to elaborate on the

distinction between OJT and LBD activities in the current context. At their core, OJT investments

capture any activity that reduces output today to increase output in the future. This tradeoff

between current and future output is not present under LBD. I can distinguish between these

theories without data on production or investment activities because the same dynamic tradeoff

generating implications testable within my framework underlies why researchers and policymakers

care about separately identifying the OJT and LBD forces in the first place.8

Identification is possible in the current paper because Glewwe et al. (2010) includes a follow-up

measurement of the effects of the program. The intuition can be outlined in the following example:

suppose that achievement increased in the treatment group while the incentive scheme was in place

(as was the case in Glewwe et al. 2010) and that the random assignment of the intervention was

balanced (as was also the case). Then the increase in achievement during the intervention must

have come from an increase in treatment-group teachers’ human capital allocated to production.

Further, a positive treatment effect on achievement after the intervention ended, beyond that

accounted for by the persistence of the during-intervention increase in achievement, would imply

that teacher quality increased, pointing to the presence of the LBD component. On the other hand,

a post-intervention treatment effect lower than that which could be explained by the persistence of

the prior achievement effect would imply that teacher quality decreased, pointing to the presence

of the OJT component. Without the follow-up data the identified set would be uninformative,

meaning we would remain in the typical case in which we could not separate OJT and LBD forces.9

I find that the 95% confidence set for the identified set for each parameter is informative.

Specifically, the lower bound on the LBD component is greater than zero and the upper bound on

complicates identification in the typical setting, the current paper’s approach allows us to learn about the importance
of OJT and LBD forces despite this fundamental data limitation.

7In his recent review of human capital in education, Burgess (2016) writes that “[w]e don’t really know what
effective teachers do that makes them effective,” (p. 72).

8While not necessary for the analysis or results, it may be useful to fix ideas with some examples of production
and investment for teachers. Examples of production activities include classroom teaching and providing feedback
to students; examples of investment activities include refining one’s teaching practice or developing new pedagogical
tools. Again, while they might help provide a more concrete picture, one should not take these specific examples as
the only activities corresponding to production or investment. Indeed, the analysis could principle inform us about
whether such a tradeoff even exists: If there were no scope for making OJT investments, say, because teachers were
inundated with classroom teaching duties, this would show up in the estimates because I allow there to be no role
played by this force.

9As the model makes clear, these follow-up data are not sufficient because the bounds also depend on mean
changes in leisure, which are also measured.
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the OJT component is lower than its uninformative level. I reject the “pure OJT” specification

(in which LBD plays no role) at the 5% significance level, but I cannot reject the “pure LBD”

specification, as the confidence set for the OJT component contains zero. When further imposing

returns-to-scale type assumptions (i.e., restrictions on the sum of the OJT and LBD components in

human capital production), bounds are tighter. Under the strongest assumption, constant returns to

scale, the 95% confidence set for the LBD component lies strictly above that for the OJT component,

meaning in this case we can also say with appreciable certainty that the LBD component is larger

than the OJT component.

This paper’s framework generates several contributions. First, it works with a human capital

production function that nests both the OJT and LBD mechanisms, as opposed to the “pure”

specifications used in prior empirical work. This allows for standard hypothesis testing about

important qualitative features, in particular, the presence of either force in the human capital

production function. Second, it uses a partial identification approach that features a closed-form

solution for the identified set: it is a locus characterized by a line. This characterization sharply

contrasts with the literature’s lack of a proof showing how to separately identify OJT and LBD

forces, yet obtains quite naturally here. Moreover, the primary input to the identified set is an

experimentally estimated ATE, commonly viewed as the “gold standard” in causal inference. Thus,

it is also easy to estimate the identified set and to do inference on it, which is rare in the partial

identification literature (Imbens and Manski, 2004; Stoye, 2009; Tamer, 2010).

Finally, in contrast to the aforementioned work estimating “pure” LBD or OJT models, the

approach does not have to make assumptions regarding the optimality of input choices or outcomes

observed in the data. Researchers with different goals, say, of examining heterogeneous impacts or

understanding how teacher quality would change under counterfactual incentive pay schemes, would

have to make stronger statistical assumptions or impose behavioral assumptions. These would

naturally represent fruitful and complementary avenues for future research. That being said, there

is a vast body of research focused on estimating production functions. As discussed by Griliches

and Mairesse (1995), estimates of production functions can serve as a good starting point to answer

many important questions. In addition to their intrinsic scientific merit, such estimates help inform

researchers and policymakers about important questions in myriad domains, for example, the effects

of inputs to the production of children’s’ cognitive achievement (see, e.g., Todd and Wolpin, 2003;

Cunha et al., 2010) to the effects of deregulation on aggregate firm productivity (Olley and Pakes,

1996) to how health care providers trade off quality and quantity (Grieco and McDevitt, 2017).

This paper seeks to understand the evolution of teacher quality from the perspective of the

dominant theories of human capital accumulation. Somewhat separately from the aforementioned

human capital literature, a small but substantively important set of papers examines other channels

underlying teachers’ improvement as they gain more experience. Ost (2014), which measures the

returns to teachers’ general and grade-specific experience, finds both to be important determinants

of teacher quality growth. Cook and Mansfield (2016) extends this work to also allow for general
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and context-specific permanent components to teacher quality. The current paper nicely comple-

ments these papers by explicitly viewing teacher quality through the lens of the main conceptual

frameworks for human capital, and by identifying and separating the OJT and LBD channels of hu-

man capital accumulation, which are not necessary to distinguish given these other papers’ goals.10

This paper also complements the extensive literature studying teacher quality more generally, re-

cently discussed in Hanushek and Rivkin (2006); Jackson et al. (2014); Strøm and Falch (2020),

and the sub-literature on teacher incentives (see, e.g., Hanushek and Raymond, 2005; Muralidharan

and Sundararaman, 2011; Imberman and Lovenheim, 2015; Petronijevic, 2016).11

2 Data and Variables

Study Design Glewwe et al. (2010) implemented a teacher incentive pay scheme in 100 primary

schools in Kenya, which provided bonuses (in the form of in-kind prizes, e.g., wall clocks or bells) to

teachers and headmasters at schools where students did well on standardized exams administered

as part of the standard curriculum in Kenya. The scheme applied to students in grades 4-8, and

bonuses were based on school-level averages to discourage competition between teachers. The

treatment group (comprising 50 schools) was exposed to the incentive scheme in 1998 and 1999,

which I refer to as the “active-treatment” years. In addition to being observed then, outcomes for

both the treatment and control groups were also observed for both a pre-treatment year (1997),

and a post-active-treatment year (2000). There were 7,492 students in the treatment schools and

8,226 students in the control schools in the pre-treatment year.12 Next, I provide an overview of

the variables used in the current analysis; please see Glewwe et al. (2010) for additional details

about the data, and Section 4 for a more detailed discussion of how I map the data to the model

(which necessarily follows the model, presented in Section 3).

Variables I measure output using the incentivized standardized achievement test presented in

the main results of Glewwe et al. (2010), which is an average of seven standardized subject-specific

achievement tests, where standardization was performed with respect to the means and standard

deviations of the control group. It is important to note that the experiment was balanced. In

particular, mean test scores in the pre-active-treatment year were balanced, and teacher exit and

entry also did not significantly differ between the control and treatment groups. The data also

include information about whether teachers were present during random, unannounced, site visits

10These papers may be viewed as part of the substantial empirical literature studying task-specific human capital
for more general worker contexts. For recent examples, see Poletaev and Robinson (2008); Sanders (2010); Yamaguchi
(2012); Robinson (2018). Sanders and Taber (2012) contains a detailed discussion of this and other extensions of the
one-dimensional human capital model.

11Although less tightly related, this paper also relates to the literature studying teacher labor markets (see, e.g.,
Dolton and Klaauw, 1999; Stinebrickner, 2001; Behrman et al., 2016; Tincani, 2021; Biasi, 2021; Bobba et al., 2021;
Biasi et al., 2021).

12As in Glewwe et al. (2010), I exclude one of the districts (Teso), which did not offer the achievement test in the
first year.
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to schools. Averaging over all teachers in either the treatment or control group provides a good

measure of the probability a teacher was present at the school for that group. Under uniformity, the

probability that a teacher was present during site visits would be affine transformations of hours

teachers were at work, a common measure of labor supply.

3 Model

The model provides the foundation for the partial identification of the components governing human

capital accumulation. It relates output (i.e., student achievement) and teacher human capital to

production and investment inputs. The specifications for the production of human capital and

output enable a closed-form, constructive, identification proof and calculation of bounds using ATE

estimates, meaning the analysis is informative about average behavior.13 They are also not very

restrictive either in terms of implications for behavior,14 or compared with specifications commonly

used in the literature.15

3.1 Environment

Let the periods be indexed by t = 0, 1, 2, where t = 0 is the pre-treatment period, t = 1 is

the “active-treatment” period, in which teachers in the treatment group are offered output-based

incentives, and t = 2 is the post-active-treatment period, where teachers in either treatment or

control group no longer are offered the incentives.

The human capital of teacher i in period t, θit, is produced according to

θit = δθθit−1 + δIIit−1 + δhhit−1, (1)

where θit−1 is teacher i’s human capital last period, Iit−1 is teacher i’s investment in human

capital last period, and hit−1 is teacher i’s input to production (e.g., actively teaching, engaging

in teaching preparation, providing feedback to students, etc.) last period. Output produced by

teacher i teaching student j in period t, yijt, which is measured by performance on a standardized

achievement test, follows a standard value-added specification (Hanushek, 1971; Murnane, 1975;

13While averages are not the only conceivable objects of policy interest, they certainly have garnered a vast amount
of interest by researchers and policymakers, as they may average out unobserved heterogeneity and also may be useful
for certain normative considerations (e.g., maximizing output).

14The human capital production function does not assume that growth in human capital is constant over time.
Indeed, as the model does not assume optimality of teacher behavior, it allows for, e.g., decreasing OJT investments
over the course of a teacher’s career, which would result in the concave value added profiles documented in the
literature.

15The model developed in this section could be viewed as a log-linear approximation to a specification considering
the behavior of a representative teacher and student in each of the control and treatment groups (see Appendix A),
and is also consistent with (specifically, nested by) the commonly used translog specification used in the burgeoning
literature using dynamic factor models to understand skill growth (see, e.g., Agostinelli and Wiswall, 2023; Del Bono
et al., 2022; Freyberger, 2021). While the link developed in the appendix might provide useful context, it is in no
way necessary to this paper’s analysis.
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Hanushek, 1979):16

yijt = θit + βhhit + βyyjt−1 + ϵijt, (2)

where yjt−1 is student j’s prior test achievement (meaning βy measures the persistence of student

knowledge), θit+βhhit is teacher i’s value added to student j’s achievement in period t (i.e., quality),

and ϵijt is an ex post IID productivity shock.17

It is not uncommon to fix leisure when operating within the “pure OJT” framework (see, e.g.,

Ben-Porath, 1967; Heckman et al., 1998; Kuruscu, 2006; Huggett et al., 2011), but doing so would

hamstring the LBD force, so given this paper’s goals it is important to allow for leisure responses.

The teacher’s input (or resource) constraint links production, hit, investment, Iit, and leisure, lit:

hit + Iit + lit = M. (3)

The variables h, I, and l could be viewed as shares of a teacher’s total time, or of a teacher’s

overall focus or potential effort respectively allocated to production, investment, and leisure. Under

the latter interpretations, a teacher has a fixed “budget” of focus/potential effort, which can be

allocated between h, I, and l; naturally, a teacher must be working to engage in production or

investment. While, for consistency with the human capital literature (see, e.g., Ben-Porath,

1967; Heckman, 1976; Killingsworth, 1982), I typically use the term “time”, one should keep these

alternative interpretations in mind. I refer to hit + Iit as total work time or total inputs; eq. (3)

then captures the notion that total work time should not increase if leisure has increased. As is

standard, neither hit nor Iit are observed, and, further, they have no inherent scale. However, we

can identify total work time because the data contain measures of its complement, leisure time,

which means the scale of hit + Iit is fixed by the scale of the measure of lit.
18

I assume that δk ∈ Dk, where Dk = [0, δ], for k = θ, I, h, and that βk ∈ Bk, where Bk = [0, β],

for k = h, y. The lower bound of zero for each parameter captures the natural assumption that

inputs cannot have negative effects. The upper bound for each parameter (i.e., δ or β) is taken to

be large; I discuss below how the specific values of δ and β do not affect this paper’s main findings.

I define the “pure OJT” specification for the human capital production function as δI > 0 and

δh = 0. Analogously, in the “pure LBD” specification, we have δh > 0 and δI = 0. Some scenar-

ios representing different possibilities for true combinations of (δh, δI) are illustrated in Figure 1

(bounds for the identified set for (δh, δI), which is denoted dh× dI , are derived in Section 3.2). For

16Recent research supports the view that controlling for prior achievement, as is done in a value-added model,
does a reasonably good job of controlling for unobserved prior inputs (see, e.g., Kinsler, 2012; Chetty et al., 2014).

17Note that the scale of θ is determined by y. This implicit normalization, in eq. (2), has no bearing at all on
the returns to teacher human capital, which are governed by δθ. I show below that this parameter is unidentified
in this paper’s framework, and is therefore immaterial to any of this paper’s results (see Agostinelli and Wiswall,
2023, for a discussion of some of the pitfalls to avoid when (point-) estimating the returns to scale for skills). Also, I
abstract from student characteristics here; as will become clear, what matters for this paper’s approach is obtaining
a consistent estimate of βy.

18The value of the endowment, M (on the right-hand side of eq. (3)), is immaterial as it differences out in the
analysis below.
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example, the point labeled “pure OJT”, on the horizontal axis, features a positive OJT compo-

nent, with no LBD component, in contrast to the point labeled “pure LBD”, on the vertical axis.

The interior point, labeled “OJT and LBD both present”, represents the possibility that teachers

accumulate human capital via both OJT and LBD components; in contrast, the “pure” versions of

the OJT and LBD human capital production functions are mutually exclusive.

Figure 1: Examples of OJT and LBD Specifications

δ

0
δI

δh

neither present pure OJT

pure LBD

OJT and LBD
both present

3.2 Derivation of Bounds

This section develops bounds for (δh, δI) that only depend on period-specific estimates of the

average treatment effects of the intervention on student achievement and on labor supply, and an

estimate of the persistence of student knowledge (which could be estimated using the same dataset,

or obtained from another source). The bounds are sharp, meaning they contain only the values of

(δh, δI) that cannot be rejected given the data. For example, the sharp bound on δI would increase

the lower bound for δI as much as possible while still being consistent with the data; if the lower

bound were greater than zero one would reject the pure LBD specification.

Define the mean difference between the treatment and control groups for variable z in period t

as ∆zt := zTt − zCt , where zTt and zCt respectively denote the treatment and control group means

of z in t.

First, note that in any period the constant time endowment implies that

∆ht +∆It +∆lt = 0. (4)

For the pre-treatment period, t = 0, the mean difference in achievement between the treatment
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and control groups is

∆y0 = ∆θ0︸︷︷︸
=0

+βh∆h0︸︷︷︸
=0

+βy ∆y−1︸ ︷︷ ︸
=0

+∆ϵ0︸︷︷︸
=0

= 0, (5)

i.e., a balanced experimental design implies there will be no average difference in the pre-treatment

average scores. Consistent with Glewwe et al. (2010), I assume the experiment was implemented

with high fidelity, and consequently omit ∆ϵt hereafter.

For the active-treatment period, t = 1, we have

∆y1 = ∆θ1︸︷︷︸
=0

+βh∆h1 + βy ∆y0︸︷︷︸
=0

= βh∆h1. (6)

Equation (6) shows that the difference between treatment and control achievement in the active-

treatment period can only come from the change in mean production time ∆h1, as the fact that

θit depends on lagged inputs and balance between the treatment and control groups implies that

∆θ0 = 0, while, as shown in eq. (5), balance between the treatment and control groups implies that

∆y0 = 0.

The mean difference in achievement between the treatment and control groups for the post-

active-treatment period, t = 2, is

∆y2 = ∆θ2 + βh∆h2 + βy∆y1

= δI∆I1 + δh∆h1 + βh∆h2 + βy∆y1

= δI [−∆l1 −∆h1]︸ ︷︷ ︸
=∆I1, from eq. (4)

+[δh + βhβy]∆h1 + βh∆h2

= −δI∆l1 +

[
δh − δI + βhβy

βh

]
∆y1︸︷︷︸

βh∆h1, from eq. (6)

+βh∆h2, (7)

which uses ∆θ1 = 0 to go from the first to the second line. Equation (7) shows that, in general,

only a locus of (δh, δI) will be identified, and, further, that many other variables appear in the same

equation: the achievement production function parameters (βh, βy) and, even after using eq. (6) to

eliminate ∆h1, the quantities (∆y1,∆y2,∆l1,∆h2).
19 The upper bound on the parameter spaces

for δh and δI , δ, is also unknown. I estimate (βy,∆y1,∆y2,∆l1) in Section 4.1. However, ∆h2 is

unobserved and it cannot be eliminated, as was ∆h1 via eq. (6).

I now discuss how I arrive at values for (βh, δ,∆h2). I show below that ∆y1 is significantly

greater than zero (i.e., there was a positive effect of the intervention during the active-treatment

period). In light of eq. (6) and the fact that βh ≥ 0, it is then reasonable to treat βh as strictly

19Note that δθ does not appear in eq. (7). Intuitively, this parameter measures how differences in teacher human
capital emanating from differences in inputs from two periods ago affect production today; the balanced experimental
design means these differences are all zero, causing δθ to drop out.
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positive, as the positive effect on achievement during the active-treatment period could only be

rationalized by an increase in time allocated to production (i.e., ∆h1 ≥ 0). Because the scale of

βh is not identified separately from δ, I fix βh = 1 and δ = 1 hereafter.20 It is important to note

that the specific values of βh and δ do not affect the main findings, such as whether bounds are

informative or whether I can reject either the “pure OJT” or “pure LBD” specifications.21

Finally, I assume ∆h2 = 0, i.e., that production after the active-treatment period is the same in

the control and treatment groups. While any potential income effects were dominated by substitu-

tion effects during active treatment (as discussed above, the data are consistent with ∆h1 > 0), the

substitution effects would no longer be present afterwards. The structure of the incentive scheme,

however, suggests that income effects, if present, would not be very large: the rewards were non-

fungible prizes, which 24 of the 50 treatment schools received, and the prize values ranged from less

than 2% to 4% of the typical teacher’s annual salary (Glewwe et al., 2010, p. 208). While this does

not preclude there being an average difference in production after active treatment, it also seems

likely that ∆h2 would be small, if it were indeed different from zero. It is important to note that

the assumption that ∆h2 = 0 does not rule out the intervention increasing a teacher’s productivity

by way of, e.g., preparing materials that could also be used in subsequent years. This increased

productivity would be captured by a higher level of θ2, which could be generated by either OJT or

LBD forces.

Assumption 1 summarizes the parameter values discussed thus far. Assumption 1(i) is main-

tained hereafter. Assumption 1(ii) corresponds to making no assumption on returns to scale for

the human capital production function. Section 3.4 explores how stronger assumptions about the

returns to scale would tighten the identified set.

Assumption 1 (Baseline, no returns to scale assumption). invisible ink

(i) βh = 1, ∆h2 = 0

(ii) (δh, δI) ∈ [0, 1]× [0, 1].

Using the values obtained thus far, eq. (7) becomes

∆y2 = [δh − δI + βy] ∆y1 − δI∆l1,

which we can rearrange to get the following expression for the LBD component δh as a function of

the OJT component δI and remaining parameters:

δh =

[
∆y2
∆y1

− βy

]
+ δI

[
1 +

∆l1
∆y1

]
, (8)

20If the researcher viewed the model as a (log-linearized) approximation to a nonlinear model (see Appendix A
for discussion), it would be natural to have βh = 1 (i.e., the same as the scale of θ, which is consistent with the
interpretation that a teacher’s output equals her share of human capital allocated to production), and also to not
allow δh or δI to exceed 1 (i.e., δ = 1).

21There are possible parameter values where the results would be affected by the choice of βh relative to δ, but
the estimated parameters are far from this region.
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i.e., eq. (8) characterizes the identified set, dh × dI . We can find the identified set for either

parameter by projecting the locus characterized by eq. (8) onto the relevant axis, e.g., dh can be

obtained by projecting dh × dI onto the δh-axis. It will be convenient to rewrite eq. (8) as

δh = πicept + πslopeδI , (9)

where the intercept of the locus of permissible combinations of (δh, δI) is πicept :=
∆y2
∆y1

−βy and the

slope of the locus is πslope := 1 + ∆l1
∆y1

.

Note that, even with the parameter values obtained so far, the relationship between (δh, δI) still

depends on (βy,∆y1,∆y2,∆l1). Section 4.1 discusses estimation of these parameters. Briefly, all

but βy are estimated using the experimental variation. Standard methods (treatment-year fixed

effects in the production function, coupled with the assumption that the experiment was balanced)

yield consistent estimates of βy when using just control-group data.22

3.3 Comparative Statics

We can understand the restrictions afforded by eq. (8) by considering some cases, where for the sake

of illustration assume ∆y1 > 0. I start by maintaining Assumption 1 and also consider a very simple

special case, to highlight the difficulty in separating OJT and LBD forces. Specifically, suppose that

∆l1 = 0 and suppose that ∆y2
∆y1

−βy = πicept = 0; this corresponds to case (a) in Table 1. Intuitively,

the increase in test score coming via the positive effect of ∆h1 on ∆y1 entirely accounts for ∆y2. The

first line of eq. (7) then implies that ∆θ2 = 0, i.e., teacher human capital post-active-treatment is

on average the same in the treatment and control groups. Further, ∆l1 = 0 (i.e., πslope = 1) implies

that ∆I1 = −∆h1, meaning the only way to satisfy eq. (8) is for δI = δh. That is, any increase in

δI can satisfy the condition by a concomitant increase in δh. Without further information on either

of these parameters, we cannot shrink the identified set. This scenario corresponds to the dashed,

45-degree, line in the left panel of Figure 2. Projecting the identified set onto each axis, we can see

that the marginal identified set for either δI or δh (depicted by the dashed lines just outside that

parameter’s axis) has not shrunk at all, because any feasible value of, e.g., δI , can be rationalized

by the same value for the coefficient on the other input to teacher human capital (in this example,

δh). That is, the bounds in this case would be uninformative.

Next consider case (b), which differs from case (a) in that ∆y2
∆y1

− βy < 0, i.e., teacher human

capital is lower in the treatment group, post active treatment (∆θ2 < 0). Because we still have

∆I1 = −∆h1, the fact that ∆θ2 < 0 means that we can rule out very low values of δI—the

OJT component—and very high values of δh—the LBD component. Intuitively, if the net effect

of increasing time spent on production on teacher human capital is negative, knowing that ∆I1 =

22This is because, for teacher-student pair ij in group g (i.e., treatment or control), we have Eij∈g [yijt] =
Eij∈g [θijt + βhhit] +βy Eij∈g [yijt−1] +Eij∈g [ϵijt+1]︸ ︷︷ ︸

=0

and Eij∈g [θijt + βhhit] can be measured by the coefficient on

a group-period indicator variable.
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−∆h1 implies that the OJT parameter must be larger than the LBD one. At the same time,

the slope of eq. (8) is unaffected because the one-to-one tradeoff between different time uses in

the budget constraint (due to there being no average change in leisure time) implies a one-to-one

tradeoff between δI and δh. This case is depicted by the dotted lines in the left panel of Figure 2.

In cases (a) and (b), there was no average difference in leisure time between the treatment and

control groups during the active-treatment period (i.e., ∆l1 = 0, or πslope = 1). Consider now case

(c), where we start from case (b) but now assume that ∆l1 < 0 (here, πslope < 1). Here, we know

that ∆I1 > −∆h1, i.e., the absolute difference in investment is smaller than the absolute difference

in production time. As shown in the dash-dotted lines in the left panel, this rotates the locus

eq. (8) downward from the intercept (which was already negative, as the starting point was case

(b)), increasing the lower bound on δI and decreasing the upper bound on δh. Intuitively, all else

equal, a smaller change in investment must be coupled with a relatively bigger technological effect

of investment (δI) to rationalize the same data.

The cases discussed above are not exhaustive. For example, the signs of ∆y2
∆y1

−βy or ∆l1 could be

opposite to those considered in cases (b) or (c), in which case the sharp bounds would be different.

An example of this is case (d), which is depicted in the right panel of Figure 2, which illustrates

how strengthening returns-to-scale-type assumptions yields tighter sharp bounds for the identified

set. The next section explores this.

3.4 Bounds with Increasing Assumption Strength

A researcher might further find it natural to restrict the returns to scale in the human capital

production function, by assuming they are nonincreasing. This is Assumption 2 below. Even

stronger, the researcher might believe it reasonable to assume constant returns to scale (Assumption

3). This exploration of how assumptions about δh+δI affect the identified sets is in the spirit of the

“worst-case” approach of Horowitz and Manski (2000), which examines the sensitivity of findings

to stronger sets of assumptions, some of which are made in the literature. It does not constitute

an endorsement of making these stronger assumptions.

Assumption 2 (Nonincreasing returns to scale (NIRS)). Assumption 1(i) and δh + δI ≤ 1.

Assumption 3 (Constant returns to scale (CRS)). Assumption 1(i) and δh + δI = 1.

The right panel of Figure 2 shows the additional information embedded in assumptions about

the returns to scale for (δh, δI), starting with Assumption 1 (case (d)); these cases are summarized in

the lower part of Table 1. Case (d2) further imposes the restriction that δh+δI ≤ 1 (Assumption 2),

which means permissible combinations of (δh, δI) lie in the south/west right triangle.23 By looking

at the dotted lines in the right panel of Figure 2, corresponding to this case, we can see that the

23Note that this restriction in itself would not yield any information; without data (e.g., information about πicept),
the bounds on either parameter, obtained from projecting the south/west right triangle onto either axis, would be
uninformative.
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marginal identified sets are tighter than those in case (d). Intuitively, the tighter upper bound for

δh, combined with the nonincreasing returns to scale assumed in case (d2), yields a tighter upper

bound for δI . Case (d3) further imposes the restriction that δh + δI = 1 (Assumption 3), which

affords point identification (interior solid point in the right panel of Figure 2).

Table 1: Bounds: Comparative Statics and Effects of Returns-to-Scale Assumptions

Case (δh, δI) ∈ ∆l1
∆y2
∆y1

− βy Notes on bounds

(a) δh ≤ 1, δI ≤ 1 0 0 Uninformative

(b) δh ≤ 1, δI ≤ 1 0 < 0 Informative

(c) δh ≤ 1, δI ≤ 1 < 0 < 0 Tighter than (b)

(d) δh ≤ 1, δI ≤ 1 0 > 0 Informative

(d2) δh + δI ≤ 1 0 > 0 Tighter than (d)

(d3) δh + δI = 1 0 > 0 Point identification

Note: ∆y1 > 0. Cases (a)-(c) correspond to comparative statics, and cases (d)-(d3) correspond to different returns-
to-scale assumptions.

3.5 Expressions for Marginal Identified Sets

This section ends by characterizing the marginal identified sets for δh and δI , which are used in

estimating the parameters’ bounds and confidence sets. Under Assumption 1, i.e., when making

no additional assumptions about returns to scale, we can derive the identified set for δh, dh, by

varying δI over its domain, resulting in

δh ∈ [max{πicept, 0},min{πicept + πslope, 1}]. (10)

Solving eq. (9) instead for δI , we can analogously obtain dI by varying δh over its domain:

δI =
δh − πicept

πslope
⇒ δI ∈

[
max

{
−πicept
πslope

, 0

}
,min

{
1− πicept
πslope

, 1

}]
. (11)

Invoking non-increasing returns to scale (Assumption 2) does not affect the lower bound of dh,

but does tighten its upper bound:

δh = πicept + πslopeδI ⇒ δh ≤ πicept + πslope[1− δh] ⇒

δh ∈
[
max {πicept, 0} ,min

{
πicept + πslope
1 + πslope

, 1

}]
. (12)
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Figure 2: Illustration of Example Identified Set Cases
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dh

dI

1

0

δI

δh
πicept

δh ≤ 1
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δI + δh ≤ 1
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(d2)

(d2)

(d3)

dh
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Note: Marginal identified sets for parameters are indicated by the lines outside their respective axes. Cases depicted
in the figure are summarized in Table 1. The left panel corresponds to comparative statics, cases (a)-(c). The right
panel corresponds to different returns-to-scale assumptions, cases (d)-(d3).

We can analogously tighten the upper bound on dI by applying Assumption 2:

δh = πicept + πslopeδI ⇒ [1− δI ] ≥ πicept + πslopeδI ⇒ [1 + πslope]δI ≤ 1− πicept

δI ∈
[
max

{
−πicept
πslope

, 0

}
,min

{
1− πicept
1 + πslope

, 1

}]
. (13)

Finally, imposing Assumption 3, we achieve point identification for both parameters:

δh = πicept + πslope[1− δh] ⇒ δh =
πicept + πslope
1 + πslope

(14)

[1− δI ] = πicept + πslopeδI ⇒ δI =
1− πicept
1 + πslope

. (15)

4 Empirical Results

4.1 Estimation of Parameters Determining Identified Set for (δh, δI)

From eq. (8), the identified set for (δh, δI) depends on (∆y1,∆y2, βy,∆l1). This section discusses

how these parameters are estimated, and Section 4.2 shows how the resulting marginal identified

sets for (δh, δI) are estimated.

I pool the two active-treatment years to map the empirical application, which spans four years

of data, to the three-period structure of the model. The pre-treatment year (1997) corresponds

to model period t = 0. Both active-treatment years (1998 and 1999) are pooled into one period,
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Table 2: Estimates of ATEs on Achievement

Dependent variable:

Test score yijt

Active-treatment (t = 1) 0.001
(0.019)

Post-active-treatment (t = 2) −0.001
(0.017)

Active ∗ treated (∆y1) 0.089∗∗∗

(0.013)

Post ∗ treated (∆y2) 0.098∗∗∗

(0.025)

Constant 0.007
(0.008)

Observations 26,537

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. The t corresponds to a pooled period.

corresponding to t = 1 in the model, and the post-active-treatment year (2000) corresponds to

t = 2. While the estimates presented here are based on the pooled data, I have examined their

sensitivity to using unpooled data when feasible (i.e., for βy, which can be estimated without the

experimental variation), and the results were essentially unaffected.

Table 2 presents the achievement ATE results for the active-treatment period (Active ∗ treated)

and the post-active treatment period (Post ∗ treated). I also include the treatment year as a

regressor (Active-treatment, Post-active-treatment) to control for secular trends. The results for

the treatment group in the active-treatment period indicate that the average treatment effect pooled

over both active-treatment years, ∆y1, is positive and significantly different than zero (0.089). The

next row indicates that student achievement in the post-active-treatment year, ∆y2, remained

significantly higher (0.098) in the treatment group. Through the lens of the model, this positive

ATE could be due to persistence of higher achievement from the active-treatment period and

(potentially) higher teacher human capital for the treatment group in the post-active-treatment

period. Establishing the relative importance of these effects is the goal of the next section.

Table 3 presents an estimate of the persistence component βy using control group data, where

the lagged score is that from the previous pooled period. I estimate the persistence component

to be 0.544, and statistically greater than zero. The estimate of persistence is not driven by

the use of pooled data: when instead using unpooled data the estimate is 0.618. Even more to

the point, this estimate is in the range of those in Andrabi et al. (2011), which estimated the
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Table 3: Estimate of the Persistence Component

Dependent variable:

Test score yijt

Lagged score yj,t−1 (βy) 0.544∗∗∗

(0.010)

Constant −0.047∗∗∗

(0.008)

Observations 5,007

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. These estimates are obtained from a regression of current test score on the
lagged test score, run on the pooled data for pooled periods 1 and 2, for the control group. Specifically, the (period)
t subindex on the test score yijt refers to a pooled period, meaning student j’s lagged test score yj,t−1 is the one from
the previous pooled period.

persistence of a variety of cognitive skills using a dynamic panel data model applied to Pakistani

schoolchildren. Allowing for both measurement error and unobserved student heterogeneity (in

contrast with the specifications researchers have typically used to estimate achievement production

functions), they estimate the (annual) persistence of cognitive skills to range from 0.2 to 0.55,

across a variety of subjects. Indeed, they argue that the upper part of their range is possibly too

high. This matters because a smaller value of βy will further tighten the estimated bounds, in light

of the achievement ATE estimates, which already yield a positive, significant, estimate of πicept.

Intuitively, the post-active treatment achievement ATE is higher than can be explained by the

active-treatment achievement ATE persisting into post-active treatment, pointing to the presence

of an LBD component; lowering the value of βy would only make this effect more prominent.

I now discuss how I obtain a value for the effect of the intervention on leisure during the active-

treatment period, ∆l1. The literature estimating OJT models of human capital accumulation that

also models labor supply typically treats labor supply as observed (see, e.g., Brown, 1976; Heckman,

1976; Blandin, 2018; Fu et al., 2021). I follow this literature and use measures of total work time,

which are sufficient for the current paper because the change in total work time (∆It +∆ht) is the

complement of the change in leisure (∆lt). The Glewwe et al. (2010) data contain two measures of

teachers’ total work time in a period: the fraction of teachers in attendance at the school during

random, unannounced, site visits by the research team that period and the fraction of teachers

present in their classroom during the site visits.24 While either could serve as a measure of total

work time, it seems more appropriate to use the share of teachers present at the school, as teachers

could make investments outside the classroom. Table 4 shows the treatment effect on the share

of teachers in attendance, -0.017, is not significantly different from zero.25 This means the point

24I use school-period-level averages because teacher-level data on either measure were not available.
25I also include the treatment year as a regressor here to control for secular trends. This finding is consistent with

that of Glewwe et al. (2010), who find no evidence that teachers in the treatment group on average altered their
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Table 4: Estimate of ATE on Teacher Attendance

Dependent variable:

Present at school in period t

Active-treatment (t = 1) 0.012
(0.025)

Post-active-treatment (t = 2) 0.052∗∗

(0.025)

Active ∗ treated (−∆l1) −0.017
(0.029)

Post ∗ treated −0.011
(0.041)

Constant 0.833∗∗∗

(0.014)

Observations 202

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Dependent variable is school-level average share of site visits during which
teachers were in attendance. The t corresponds to a pooled period.

estimate for the effect on leisure, which is the negative of the effect on total work time, is positive,

at 0.017 (and, naturally, also not significantly different from zero). It is important to note that,

even though the estimated effect on leisure is not significantly different from zero, I use the estimate

of ∆l1 (and the associated uncertainty) when estimating bounds and conducting inference.

4.2 Estimates of Bounds

The parameters characterizing the identified set for (δh, δI), πicept and πslope, can be estimated

using π̂icept :=
̂∆y2

∆y1
− βy and π̂slope := ̂1 + ∆l1

∆y1
, which are computed using plug-in estimators. To

simulate the joint distribution of (π̂icept, π̂slope), taking into account the variability of the inputs

to the plug-in estimators, I bootstrap the joint distribution of (∆̂y1, ∆̂y2, β̂y, ∆̂l1), where in each

bootstrap replication, the individual elements are estimated as described just above.26

I provide an overview here of how I estimate the bounds and confidence sets for the parameters;

see Algorithm 1 in Appendix B for more detail. I first construct the identified set, d̂h × d̂I , and

then project this set onto each marginal dimension, and then construct confidence sets to contain

each parameter (not the identified set for each parameter) at the pre-specified significance level (I

use a confidence level of 95%). Estimated bounds are the average across the identified sets. By

school attendance or classroom presence (see Table 5, Panels A and B, columns (2) and (3), of that paper).
26I bootstrap using 100,000 replications of the data, stratified by treatment status.
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projecting the identified set onto the marginal dimensions, I avoid the problem of overly conservative

confidence sets described by Kaido et al. (2019). That being said, the estimated confidence sets are

virtually identical when containing parameter or identified set with particular probability, because

each confidence set contains at least one end point of the parameter space.

Results Figure 3 illustrates the estimated bounds and 95% confidence sets for δh and δI under

the different assumptions about δh+ δI . The table below presents the corresponding estimates and

also reports bound widths. Starting with the LBD parameter in panel (a), we can see that when we

do not impose a returns-to-scale-type assumption (“None”), the estimated upper and lower bounds

(thick, black, line) for δh are informative, and the lower bound is greater than zero at the 95%

confidence level (thin, grey, line), leading us to reject the pure OJT specification (in which δh = 0).

Similarly, in panel (b) we can see that the estimated upper and lower bounds for δI are informative,

and that the 95% confidence set for δI does not contain the upper bound of 1 when no assumption

about returns to scale is made (“none”).

At this point it would be natural to ask how reasonable it would be to surmise that LBD could

underlie the observed patterns, in light of the fact that LBD operates via changes in production

time during active treatment h1, coupled with the previous finding that there was not a significant

change in leisure during the active-treatment period. This is fine for two reasons. First, while

the identified set for δI does include zero, it also includes positive values; such parameter values

would naturally yield positive controls levels of OJT investments that could decrease in the active-

treatment period. Second, by using the estimates in Table 4 we can see that the 95% confidence

interval for the change in total work time (−∆l1) is [−0.074, 0.04], which includes increases in total

work time of 9% over to the pre-intervention mean of 0.833.

Imposing non-increasing returns to scale (“NIRS” on the horizontal axis in each panel) tightens

the estimated upper bound for δh, although it does not affect the 95% confidence set, because the

estimated lower bound, which governs the lower bound of the confidence set, is unchanged. However,

imposing NIRS does tighten the estimated upper bound and upper bound on the confidence sets for

δI . Intuitively, high values of both δh and δI are no longer mutually feasible under NIRS, lowering

the upper bounds for both parameters. Consequently, we can see in the accompanying table that

the width of the estimated bounds falls by about one half for both parameters when imposing NIRS

(e.g., from 0.433 to 0.233 for δh), and the same is true of the width of the 95% confidence set for

δI . Finally, imposing constant returns to scale (“CRS” on the horizontal axis in each panel) yields

point identification for both parameters, corresponding to the smallest width confidence sets. The

estimated bounds are of course zero width in this case.

Overall, under all the assumptions about returns to scale, the achievement ATE in the post-

active-treatment period is larger than would be accounted for by the positive ATE in the active-

treatment period (caused by an increase in h1, an input to contemporaneous student achievement)

and persistence of this increased student achievement. That is, the OJT component, operating
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through ∆I1 ≤ 0, is dominated by the LBD component, operating through ∆h1 > 0. We can reject

the “pure OJT” specification in which δh = 0 across all returns-to-scale assumptions at the 95%

confidence level. However, we cannot reject that δI = 0 in any of the returns-to-scale assumptions

at the 95% confidence level; this means we cannot reject the “pure LBD” specification. Further,

if one were willing to assume CRS, then one could infer that δh was greater than δI , as the 95%

confidence sets under CRS do not overlap; the same cannot be said under either of the weaker

assumptions.

Discussion The finding that LBD, at least in part, explains growth in teacher quality means that,

on average, teachers improve by teaching their students. Of course, teachers might also improve by

making OJT investments, as the confidence set for the OJT component includes strictly positive

values. While this might seem quite intuitive, economists to date had not been able to identify the

force within human capital theory behind why teacher quality should increase with experience.

Coming back to the specific context underlying this paper’s estimates, Glewwe et al. (2010)

assessed that the intervention may have increased “teaching to the test”, not more general student

knowledge. They surmised this because, in contrast to the results for the incentivized exam (used in

the current paper), student achievement for a non-incentivized exam that covered similar material

did not significantly increase in the treatment group during active treatment. That being said,

it is important to note that the associated change in teacher human capital was not limited to

a one-time change contained only to the active treatment period, as it did show up in the post-

active-treatment period, meaning that the current paper does identify a force generating a form of

teacher human capital. However, just as the above assessment of Glewwe et al. (2010) warrants a

modicum of caution when interpreting the findings of that paper, it does so for those of this paper

too.

While I use the incentivized test to most clearly demonstrate the current methodology for

separately identifying OJT and LBD, we can also use the developed framework to help think about

the importance of LBD versus OJT in generating (desirable) teacher human capital, even in light

of the above caveat. Somewhat loosely, imagine there were two forms of OJT investment, one for

“incentivized teacher human capital”, and another for more general (or unincentivized) teacher

human capital, and analogously that a teacher can allocate her time to production of either form of

human capital in her students (which could manifest in different degrees in student achievement).

Through the lens of the model it still must be the case that ∆h1 > 0, i.e., teacher human capital

allocated to production increased in the treatment group during the active-treatment period. While

all we know is that this increase in production time may have been directed to incentivized (and

not more general) student knowledge, my findings suggest the OJT investment likely decreased for

either type of human capital. Then, the fact that the post-active treatment effect was still greater

than that which would be explained by the persistence of the active-treatment achievement effect

is still consistent with OJT not playing the paramount role, insofar as achievement depended on

20



Figure 3: Estimated Bounds and Confidence Sets

(a) δh: LBD
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(b) δI : OJT
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Notes: The left panel depicts estimated bounds ( ) and 95% confidence sets ( ) for δh, under Assumptions 1,
2, and 3 (denoted on the bottom axis via “None”, “NIRS”, and “CRS”, respectively). The right panel depicts the
analogous results for δI .

Assumption Estimated bounds 95% confidence set

Parameter about δh + δI Min. Max. Width Min. Max. Width

δh 1: None 0.565 0.998 0.433 0.067 1 0.933

2: NIRS 0.565 0.798 0.233 0.067 1 0.933

3: CRS 0.798 0.798 0 0.562 1 0.438

δI 1: None 0.003 0.378 0.375 0 0.853 0.853

2: NIRS 0.003 0.202 0.199 0 0.438 0.438

3: CRS 0.202 0.202 0 0 0.438 0.438

Notes: Assumption 1 corresponds to no assumption about the returns to scale for δh + δI , and Assumptions 2 and 3
respectively correspond to non-increasing and constant returns to scale.
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both test-specific and general inputs.

5 Conclusion

I develop a framework nesting the OJT and LBD forces of human capital accumulation, and derive

theoretical bounds for OJT and LBD components. The developed bounds are sharp, and yield novel

information about the presence and relative importance of the forces generating human capital. The

derived bounds only require information about ATEs and the persistence of student achievement.

The estimated bounds are informative, and under even the weakest assumptions about the returns

to scale allow one to reject the “pure OJT” model. That is, the data are consistent with the

presence of an LBD component to teacher human capital accumulation. This suggests the dynamic

multitasking problem inherent to the “pure OJT” model is at least tempered by the presence of an

LBD component to human capital accumulation.

Overall, this paper constitutes an important step towards designing effective educational policy

that targets teachers and also shows how a partial identification approach can exploit existing

data, designed for another purpose, to answer an important policy relevant question. This paper’s

framework could also be applied to other contexts, in education and otherwise. It is common

to collect follow-up measures to gauge the longer-run effects of educational interventions. The

framework developed in this paper provides a way to interpret such follow-up data on interventions

targeting teachers, through the lens of classic conceptual frameworks for human capital: longer-

run effects stem from the persistence of student knowledge and changes in teacher human capital.

Future teacher incentive pay experiments that collected follow-up data would be able to apply this

paper’s methodology to identify the forces underlying teacher human capital growth. The strategy

developed in this paper could also be adapted to other applications in which there were outcome-

based incentives and a followup measure of output, to quantify the importance of different channels

underlying human capital development.

In light of the well known identification difficulties, it may be surprising that we can learn

something new about human capital accumulation, even under the transparent and relatively simple

approach taken here. A very promising, complementary, tack would be the structural econometric

approach, which would require different (some stronger) assumptions but could then also answer

other important questions about the importance of OJT and LBD forces in teachers’ human capital

accumulation. Such an approach would also be well-suited to rationalize the observed patterns in

the data, and would yield other benefits, such as allowing for heterogeneity in teacher human capital

accumulation trajectories and, thus, heterogeneity in the growth of teacher quality. It would also

permit simulation of behavior and outcomes under counterfactual incentive schemes. This is left

for future research.
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APPENDIX

A Relationship to a Log-Linear Specification

This section illustrates one way in which the linear technologies (1)-(2) relate to nonlinear speci-

fications. The illustration considers a representative teacher, teaching a representative student, in

each of the control and treatment groups; therefore I suppress the teacher and student subscripts

in this section. I maintain the assumption of balance of the experimental design.

Consider the following production function for teacher human capital, denoted here as κt:

κt = κγκt−1[κt−1ιt−1]
γι [κt−1ζt−1]

γζ , (16)

where κt−1 is the teacher’s human capital last period (which may depreciate), ιt−1 is the share

of the teacher’s human capital last period spent on OJT investment, and ζt−1 is the share of the

teacher’s human capital last period spent on production. The parameters of interest, respectively

representing the OJT and LBD components of human capital accumulation in (16), are (γι, γζ) ∈
[0, 1]2.27

Using ˜ to denote the log of a variable, we can write the log-linearized version of the human

capital production function, eq. (16):

κ̃t = [γκ + γι + γζ ]κ̃t−1 + γιι̃t−1 + γζ ζ̃t−1. (17)

Let wt measure the cognitive skill of the student in period t, which is produced according to28

wt = κλκ
t ζ

λζ

t wλw
t−1, (18)

which, in logs, is

w̃t = λκκ̃t + λζ ζ̃t + λww̃t−1. (19)

This equation is a log-linearized value added specification for cognitive achievement, where the

value added to log achievement is λκκ̃t + λζ ζ̃t.

As before, the bounds on the parameters of interest will depend on the ATEs for achievement

and leisure. With a representative teacher and student, we have ∆z̃t = z̃Tt − z̃Ct for z = κ, ι, ζ, w.

For the pre-treatment period, t = 0, the mean difference in achievement between the treatment

27Note that the unit interval is conservative, as it allows for parameter values that could yield explosive growth
and would thus likely be ruled out a priori if estimating this model. As is the case with any model, this specification
is meant to serve as an approximation to reality. If taken literally (and augmented with additional assumptions to
rationalize input choices) then a pure LBD specification would likely yield an optimal OJT investment of ιt−1 = 0,
which would imply κt = 0. Even here, however, even small positive values of γι would avoid this problem.

28I have not included an error because there is a representative student in each group.
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and control groups is

∆w̃0 = λκ∆κ̃0︸︷︷︸
=0

+λζ ∆ζ̃0︸︷︷︸
=0

+λw ∆w̃−1︸ ︷︷ ︸
=0

= 0, (20)

i.e., a balanced experimental design implies there will be no average difference in the pre-treatment

average scores, as was also the case in Section 3.2.

For the active-treatment period, t = 1, we have

∆w̃1 = λκ∆κ̃1︸︷︷︸
=0

+λζ∆ζ̃1 + λw ∆w̃0︸︷︷︸
=0

= λζ∆ζ̃1. (21)

Similar to eq. (6), eq. (21) shows that the difference between treatment and control achievement

in the active-treatment period can only come from the change in mean working time, ∆ζ̃1.

The mean difference in achievement between the treatment and control groups for the post-

active-treatment period, t = 2, is

∆w̃2 = λκ∆κ̃2 + λζ∆ζ̃2 + λw∆w̃1

= λκγι∆ι̃1 + λκγζ∆ζ̃1 + λζ∆ζ̃2 + λw∆w̃1, (22)

which uses ∆θ1 = 0 to go from the first to the second line. Assuming for simplicity that the

intervention had no effect on leisure, we have

∆ζt +∆ιt = 0, (23)

i.e., the effect on OJT investment is opposite that on production shares. Substituting using eqs. (21)

and (23) and maintaining the assumption that post-active treatment production shares will not be

different between the control and treatment groups (i.e., ∆ζ̃2 = 0), eq. (22) becomes

∆w̃2 =

[
λκγζ − λκγι + λζλw

λζ

]
∆w̃1.︸ ︷︷ ︸

λζ∆ζ̃1, from eq. (21)

(24)

The last step is to obtain values for the relevant quantities in (24), λκ, λζ , λw,∆w̃1,∆w̃2. Anal-

ogous to Section 4, I set λκ = 1 and λζ = 1; both of these are effectively normalizations,29 and these

parameters having the same value is consistent with a teacher’s value added being the share of her

human capital allocated to production. Next consider the remaining parameters, λw,∆w̃1,∆w̃2. It

is well known that test scores measuring, e.g., cognitive skill, have no inherent scale, meaning any

29λκ fixes the scale of pre-treatment teacher human capital, which is unobserved and yields no direct testable
implications; this normalization was also made in the model in the main text. Setting λζ = 1 may not strictly be
a pure normalization, as a null ATE on achievement in the active-treatment period could stem from λζ = 0 and/or
∆ζ̃1 = 0. However, both of these parameters must be nonzero to match the positive ATE in the data; given this,
then, setting λζ = 1 is innocuous.
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monotonic (increasing) transformations (e.g., logarithms) are also valid measures (see, e.g., Cunha

and Heckman, 2008). Given the earlier argument that qualitative differences in inputs drive the

analysis, and the known sensitivity of achievement tests to monotonic transformations (Bond and

Lang, 2013), it is reasonable to use the estimator of βy as an approximation for λw. In a similar

way, we can use ∆yt, which corresponds to the estimated difference in value added between the

treatment and control groups, to measure ∆w̃t, the difference in achievement for the students re-

spectively representing the treatment and control groups. Putting all of this together, the bounds

obtained for (δI , δh) would also apply to (γι, γζ).

B Estimation of Confidence Sets

This appendix describes the algorithm used to estimate the confidence sets for δh and δI .

Algorithm 1 Bootstrap estimation of confidence sets

for s = 1 . . . nSamp do
Sample observations from treatment and control groups (stratified by treatment group)
Estimate (β̂s

y, ∆̂ls1, ∆̂ys1, ∆̂ys2)
Use simulated values to create locus defined by eq. (8)
Project locus onto marginals, obtaining random intervals d̂sh, d̂

s
I

end for
for k = h, I do

for dtryk ⊆ Dk do

retain dtryk iff 1
nSamp

∑nSamp
s=1 1{d̂sk ⊆ dtryk } ≥ 1− α

end for
end for
(1− α)% confidence set for δk is arg min dtryk retained{max{dtryk } −min{dtryk }}
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